Chapter 9
Sorting Algorithms

Terminology

- Internal – done totally in main memory.
- External – uses auxiliary storage (disk).
- Stable – retains original order if keys are the same.
- Oblivious – performs the same amount of work regardless of the actual input.
- Sort by address – uses indirect addressing so the record (structure) doesn’t have to be moved.

Selection Sort

- Select elements one at a time and place in proper final position.
- Repeatedly find the smallest.
- 3 6 43 1 9
 1 6 43 3 9
 1 3 43 6 9
 1 3 6 43 9
 1 3 6 9 43

- Code is shown in Figure 1.

 template<class T>
 void SelectionSort(T a[], int n)
 {
 // Sort the n elements a[0:n-1].
 for (int size = n; size > 1; size--) {
 int j = Max(a, size);
 Swap(a[j], a[size - 1]);
 } // for
 } // SelectionSort

- Analysis: \(n + n - 1 + n - 2 + \ldots + 1 = n(n-1)/2 \)
- Only \(n \) moves – use when records (structure) are long.
- Requires \(n^2 / 2 \) compares even when already sorted - oblivious.

Bubble Sort

- Compares adjacent elements – exchanges if out of order.
- Lists get smaller each time – at least one is placed in final order.
- Place of last swap is as much as you have to look at.
- Code is shown in Figure 2.

 template<class T>
 void BubbleSort(T a[], int n)
 {
 // Sort a[0:n-1] using bubble sort.
 for (int i = n; i > 1; i--)
 {
 for (int j = 0; j < i - 1; j++)
 {
 if (a[j] > a[j+1]) Swap(a[j], a[j+1]);
 } // for
 } // BubbleSort

- Analysis: \(n + n - 1 + n - 2 + \ldots + 1 = n(n-1)/2 \)
Insertion Sort

Sorts by inserting records into an already existing sorted file.

- Two groups of keys - sorted and unsorted.
- Code is shown in Figure 3.
- Insert n times - each time move $\frac{1}{2}$ elements to insert.
- The number of elements in the list changes so
 $$\frac{1}{2}(1 + 2 + 3 + \ldots + n) = \frac{1}{2} \times \frac{1}{2} n(n + 1) = \frac{1}{4} n^2$$
- 11 5 17 1 21
 5 11 17 1 21
 1 5 11 17 21
 1 5 11 17 21
- Performs better when the degree of unsortedness is low – recommended for data that is nearly sorted.
- Improvements
 1. Use binary search $O(n \log n)$ compares, but number of moves doesn’t change so no real gain.
 2. Linked list storage – can’t use binary search – still $O(n^2)$.
- Could use sentinel containing the key search until $p->info.key >= q->info.key$
- Sentinel is extra item added to one end of the list so ensure that the loop terminates without having to include a separate check.

Shell Sort

- A subquadratic algorithm whose code is only slightly longer than insertion sort, making it the simplest of the faster algorithms.
- Avoid large amounts of data movement by:
 - Comparing elements that are far apart.
 - Comparing elements that are less far apart.
 - Gradually shrinks toward insertion sort.
- Consider Figure 4, which shows an example of shell sort with the increment sequence of \{1, 3, 5\}.

<table>
<thead>
<tr>
<th>Original</th>
<th>81</th>
<th>94</th>
<th>11</th>
<th>96</th>
<th>12</th>
<th>35</th>
<th>17</th>
<th>95</th>
<th>28</th>
<th>58</th>
<th>41</th>
<th>75</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>After 5-sort</td>
<td>35</td>
<td>17</td>
<td>11</td>
<td>28</td>
<td>12</td>
<td>41</td>
<td>75</td>
<td>15</td>
<td>96</td>
<td>58</td>
<td>81</td>
<td>94</td>
<td>95</td>
</tr>
<tr>
<td>After 3-sort</td>
<td>28</td>
<td>12</td>
<td>11</td>
<td>35</td>
<td>15</td>
<td>41</td>
<td>58</td>
<td>17</td>
<td>94</td>
<td>75</td>
<td>81</td>
<td>96</td>
<td>95</td>
</tr>
<tr>
<td>After 1-sort</td>
<td>11</td>
<td>12</td>
<td>15</td>
<td>17</td>
<td>28</td>
<td>35</td>
<td>41</td>
<td>58</td>
<td>75</td>
<td>81</td>
<td>94</td>
<td>95</td>
<td>96</td>
</tr>
</tbody>
</table>

Figure 4 Shell Sort
• Shell sort is known as a *diminishing gap sort*.
• The code for Shell sort is shown in Figure 5.
• Worst case running time is \(O(n^2) \).
• The average running time appears to be between \(O(n^{5/4}) - O(n^{7/6}) \) if we use a gap of 2.2.

Merge Sort

- Chop the lists into two sublists. Sort the two pieces. Combine by merging. (Some techniques just get sublists of larger and larger powers of two.)
- The pieces may also be sorted via *MergeSort*, so it is recursive.
- What would the code look like for *MergeSort*?
- The code for Merge is shown in Figure 6.
- In merging sublists of length \(n \), clearly no more than \(2n \) compares are required. Actually it is less than this, but it is easy to count this way.
- Each level takes exactly \(n \) compares and there are \(\log n \) levels, the complexity is \(O(n \log n) \).
- A closer count is \(n \log n - 1.25n + 1 \) (by running test cases)
- If linked lists, no problem with storage space. If we have an array of items to be stored, the *MergeSort* requires an auxiliary storage array.

Quick Sort

- Partition the set into two sets: those elements less than \(j \) and those elements greater than \(j \). \(j \) is called the pivot.
- Often done as: Use two pointers – top pointer looks for a value smaller than \(j \), bottom pointer looks for a value larger than \(j \). Then interchange. This does only a third as many swaps.
Apply recursively.
The code for QuickSort is shown in Figure 7.
Analysis: At each level, all elements of the array are examined. The number of levels depends on how equally the pieces are divided. Best case: log \(n \) levels yielding \(O(n \log n) \).
Worst case: let \(n \) be the size of the array to be sorted:
\[
C(n) = n - 1 + C(n - 1) = \frac{n(n - 1)}{2}
\]
Space requirement: depends on recursive stacking.
Improvements
1. Use median of three so don’t get a bad pivot.
2. Use sentinel at each end so don’t have to check (avoid left and right crossing)
3. Switch to insertion sort when size gets small - can do one big insertion sort on all.

Final Thought
In Figure 8, notice that QuickSort and MergeSort have a similar program structure.
Both have \(O(n) \) work to either
1. Divide into chunks or
2. Put the chunks back together.
The pictures we draw (for expected case) look the same.
The formula analysis looks the same.
We see it doesn’t matter whether we do the work before the recursion or after. The work is the same.

Quickselect
Find the \(k \)th smallest element in an array of \(N \) items.
We can do better than sorting the array first.

```cpp
template<class T>
void QuickSort( T a[], int l, int r )
{  if ( l >= r ) return;
   int i = l,      // left-to-right cursor
      j = r + 1;  // right-to-left cursor
   T pivot = a[l];
   while ( true ) {
      do {// find >= element on left side
           i = i + 1;
         } while (a[i] < pivot);
      do {// find <= element on right side
           j = j - 1;
         } while ( a[j] > pivot );
      if ( i >= j ) break;  // swap pair not found
      Swap( a[i], a[j] );
   } // while
   a[l] = a[j];
   a[j] = pivot;
   QuickSort( a, l, j-1 ); // sort left segment
   QuickSort( a, j+1, r ); // sort right segment
} // QuickSort
```

Figure 7 Quick Sort

```cpp
QuickSort(a[],low,high) {
   pivot = partition(a,low,high)
   QuickSort(a,low,pivot-1)
   QuickSort(a,pivot+1,high)
} // QuickSort
```

```
mid=(low+high)/2
MergeSort(a[],low,high) {
   MergeSort(a,low,mid)
   MergeSort(a,mid+1,high)
   Merge(a,low,mid,high)
} // MergeSort
```

Figure 8 QuickSort and MergeSort

```cpp
MergeSort(a[],low,high) {
   mid=(low+high)/2
   MergeSort(a,low,mid)
   MergeSort(a,mid+1,high)
   Merge(a,low,mid,high)
} // MergeSort
```

```cpp
QuickSort(a[],low,high) {
   pivot = partition(a,low,high)
   QuickSort(a,low,pivot-1)
   QuickSort(a,pivot+1,high)
} // QuickSort
```
• The solution is to have an algorithm that is similar to QuickSort but with only one recursive call.
• The steps of the algorithm are as follows:
 1. If the number of elements in S is 1, return the single element in S.
 2. Pick any element v in S. It is the pivot.
 3. Partition $S - \{v\}$ into L and R, exactly as was done with quicksort.
 4. If $k \leq$ number of elements in L, the item we are searching for must be in L. Call $\text{Quickselect}(L, k)$ recursively. Otherwise, if k is exactly equal to 1 more than the number of items in L, the pivot is the k^{th} smallest element, and we can return it as the answer. Otherwise, the k^{th} smallest element lies in R, and it is the $(k - |L| - 1)^{th}$ smallest element in R. Again, we can make a recursive call and return the result.
• Notice that only one recursive call is made.
• If the pivot is chosen correctly, it can be shown, that even in the worst case, the running time is linear.

Indirect Sorting

• If we are sorting an array whose elements are large, copying the items can be very expensive.
• We can get around this by doing *indirect sorting*.
 o We have an additional array of pointers where each element of the pointer array points to an element in the original array.
 o When sorting, we compare keys in the original array but we swap the element in the pointer array.
• This saves a lot of copying at the expense of indirect references to the elements of the original array.