Let’s revisit Minimum Spanning Trees

- A spanning tree of an undirected graph is a tree formed by graph edges that connect all the vertices of the graph.
- A minimum spanning tree is a connected subgraph of G that spans all vertices at minimum cost.
 - The number of edges in the minimum spanning tree is \(|V| - 1|.
- Figure 6(b) is the minimum spanning tree of the graph in Figure 6(a).
 - In this case, the minimum spanning tree happens to be unique. This is unusual.

![Figure 1 Graph and minimum spanning tree](image)

- Figure 2 shows the action of Kruskal’s algorithm on the graph shown in Figure 1.
 - Notice in step 6 that edges \((v_1, v_3)\) and \((v_0, v_2)\) are rejected because either would cause a cycle.
How do we determine whether an edge \((u, v)\) should be accepted or rejected?

- Maintain each connected component in the spanning forest as a disjoint set.
- If \(u\) and \(v\) are in the same disjoint set, as determined by two find operations, the edge is rejected because \(u\) and \(v\) are already connected.
- Otherwise, the edge is accepted and a union operation is performed on the two disjoint sets containing \(u\) and \(v\), in effect, combining the connected components.
Introduction

- We are looking to solve the equivalence problem: the disjoint set class.
- It is easy to implement and takes very little code.
- We will look at:
 - Three simple applications of the disjoint set class.
 - A way to implement the set with minimal effort.
 - A method that increases the speed of the class using two simple observations.
 - Analysis of running time.

Equivalence Relations

- A relation \(R \) is defined on a set \(S \) if for every pair of elements \((a, b) \), \(a, b \in S \), \(a R b \) is either true or false. If \(a R b \) is true, we say that \(a \) is related to \(b \).
- An equivalence relation is a relation \(R \) that satisfied three properties:
 - Reflexive: \(a R a \) is true for all \(a \in S \).
 - Symmetric: \(a R b \) if and only if \(b R a \).
 - Transitive: \(a R b \) and \(b R c \) implies that \(a R c \).
- Electrical connectivity, where all connections are by metal wires, is an equivalence relation.
 - It is reflexive as a component is connected to itself.
 - It is symmetric since if \(a \) is connected to \(b \), \(b \) is also connected to \(a \).
 - It is transitive since if \(a \) is connected to \(b \), and \(b \) is connected to \(c \), then \(a \) is also connected to \(c \).
- An example of a relation in which town \(a \) is related to town \(b \) if traveling from \(a \) to \(b \) by road is possible.
 - This relationship is an equivalence relation if the roads are two-way.

Dynamic Equivalence and Two Applications

- For any equivalence relation, denoted \(\sim \), the natural problem is to decide for any \(a \) and \(b \) whether \(a \sim b \).
 - If the relation is stored as a two-dimensional array of Boolean variables, equivalence can be tested in constant time.
 - Unfortunately, the relation is usually implicitly, rather than explicitly defined.
- Assume we have the set \(\{a_1, a_2, a_3, a_4, a_5\} \)
 - We would need a \(5 \times 5 \) array.
However, if $a_1 \sim a_2$, $a_3 \sim a_4$, $a_1 \sim a_5$, $a_4 \sim a_2$ are all related, that implies that all pairs are related.

How can we find this quickly?

- The equivalence class of an element $x \in S$ is the subset of S that contains all the elements related to x.
 - Note the equivalence classes form a partition of S.
 - To decide whether $a \sim b$, we need only check whether a and b are in the same equivalence class.
- Disjoint sets are sets such that $S_i \cap S_j = \emptyset$.
 - The two basic disjoint set class operations are:
 - find – return the name of the set (i.e., equivalence class containing a given element.
 - union – adds relations to a set.
 - If we want to add a pair (a, b) to the list of relations, we:
 - Determine whether a and b are related.
 - Done by doing a find on both a and b and finding out if they are in the same equivalence class.
 - If they are not, apply union.
 - These operations are dynamic because, during the course of the algorithm execution, the sets can change via the union operation.
- Before we look at the implementation of the union and find operations, we look at some applications.

Another Example: Generating Mazes

- An example of a maze is shown in Figure 3.

![Figure 3 50 x 88 maze](image)

- An algorithm for generating the maze:
 - Start with walls everywhere (except for the entrance and exit).
 - Continually choose a wall randomly
Knock the wall down if the cells that the wall separates are not already connected to each other (same equivalence class).

Repeat the process until the starting and ending cells are connected.

The application of this algorithm is demonstrated using a 5×5 maze.

Figure 4 shows the initial state.

![Figure 4](image)

Figure 4 All walls are up, and all cells are their own set

Figure 5 shows a later stage after a few walls have been knocked down.

![Figure 5](image)

Figure 5 At a later point

Suppose the wall between 8 and 13 is considered.
- It would not be knocked down since 8 and 13 are in the same set.

Suppose we select the wall between 18 and 13.
- Using the find operation, we see that they are in different sets.
- Knock down the wall.
- The sets containing 18 and 13 are combined using the union operation giving us Figure 6.

![Figure 6](image)

Figure 6 Combining cell 18 and 13
The Disjoint Set Class

The Quick-Find Algorithm

- Two strategies for implementing the union/find data structure.
 - The first insures that the find instruction can be executed in constant worst-case time.
 - The second insures that the union operation can be executed in constant worse-case time.
 - It has been shown that both cannot be done simultaneously in constant worse-case (or even amortized) time.
- To implement the first case, suppose we maintain the equivalence class as an array in which the index is the name of the node and the element stored in the table is the equivalence class name (which is just a node name).
 - How long does it take to do find?
 - Constant, just an array lookup.
 - What about a union(a, b)?
 - Takes a scan of the array to change one class to another and this is linear.
 - If we have to do \(N - 1 \) of them, then it is quadratic.
 - The time for union is unacceptable.
- What if we keep all the elements that are in the same equivalence class in a linked list?
 - We save in the union operation but we lose with the find.
- In the next section, we look at a solution in which union is done in constant time, but the find is hard.

The Quick-Union Algorithm

- The find operation does not have to return any specific name.

Figure 7 shows all the necessary walls have been knocked down and everything is in the same set.

The running time is dominated by the union/find costs.
- If you analyze the problem, you will find that there are \(O(N) \) union operations and \(O(N) \) find operations.

The Quick-Find Algorithm

- Two strategies for implementing the union/find data structure.
 - The first insures that the find instruction can be executed in constant worst-case time.
 - The second insures that the union operation can be executed in constant worse-case time.
 - It has been shown that both cannot be done simultaneously in constant worse-case (or even amortized) time.
- To implement the first case, suppose we maintain the equivalence class as an array in which the index is the name of the node and the element stored in the table is the equivalence class name (which is just a node name).
 - How long does it take to do find?
 - Constant, just an array lookup.
 - What about a union(a, b)?
 - Takes a scan of the array to change one class to another and this is linear.
 - If we have to do \(N - 1 \) of them, then it is quadratic.
 - The time for union is unacceptable.
- What if we keep all the elements that are in the same equivalence class in a linked list?
 - We save in the union operation but we lose with the find.
- In the next section, we look at a solution in which union is done in constant time, but the find is hard.

The Quick-Union Algorithm

- The find operation does not have to return any specific name.
Two finds on two elements return the same answer if and only if they are in the same set.

- Maybe we should use a tree, since each element in the tree has the same root.
- A tree represents each set.
 - A forest is a collection of trees.
 - The trees do not have to be binary.
 - They could be implemented using an array because the only information we need is the parent.
 - \(p[i] \) is the parent of element \(i \).
 - A \(-1\) is used to indicate the node is the root.
 - Figure 8 shows a forest and the array that represents it.

![Figure 8 Forest of eight elements](image)

- To perform a union of two sets, we merge the two trees by making the root of one tree a child of the root of the other.
- Consider Figures 9, 10, and 11 that show the forest after \(\text{union}(4, 5) \), \(\text{union}(6, 7) \), and \(\text{union}(4, 6) \) where the convention is adopted that the new root after \(\text{union}(x, y) \) is \(x \).

![Figure 9 Forest after the union of trees rooted at 4 and 5](image)

![Figure 10 Forest after the union of trees rooted at 6 and 7](image)
• A find operation on element \(x \) is performed by returning the root of the tree containing \(x \).
 - How long does this take?
 - The number of nodes on the path from \(x \) to the root. Note we assume that we know where the node itself is as the nodes are stored in a table. Because only parents are stored, we would have no way of finding them otherwise.

Smart Union Algorithms

• A simple improvement to the previous algorithm is to make the smaller tree (in terms of number of nodes) a subtree of the larger, breaking ties by any method.
 - This is called union-by-size.
• Figure 12 shows the union(3, 4). In place of a -1, we store the size of the tree (note the minus 5).
 - What would have happened if the union-by-size had not been used?

 A deeper forest would have been formed.
 - Would take more time for the find operation.
 - What is maximum number of levels of the find? (log) Would have to have a tree twice as big to gain an additional level.

• Figure 13 shows the worst case tree possible after 15 union operations.
 - The tree is obtained by unioning trees of the same size.
• We need to maintain the size of each tree. This can be done as part of the array as seen in Figure 14.
• Another implementation is union-by-height in which we keep track of the height of the trees and perform union operations by making a shallower tree a subtree of the deeper tree.
 o This technique can be seen in Figure 17. Notice the root now stores the height as a negative number.

Path Compression

• We have a good algorithm, but sometimes find can be costly because the shape of the tree.
• Can we do something clever is decrease the time of the find operation?
• After we do a find on x, changing x’s parent to the root would make sense.
 o However, we can also change the parents of all nodes on the path from x to the root on the access path.
 o This is called path compression.
 o Notice that this shortens the length of the path from the node accessed to the root.
• Figure 15 shows the effect of path compression after find(14) on the generic worst tree shown in Figure 13.
Path compression is compatible with union-by-size. However, it is not compatible with union-by-height as there is no efficient way to change the height of the tree.
 - No problem, we do not recompute the height.
 - Thus, the heights stored for each tree become estimated heights, called ranks.
 - The resulting algorithm is called union-by-rank.
 - This algorithm gives an almost linear guarantee of running time for a sequence of M operations.

```c
UnionSets(int root1, int root2)
{  assertIsRoot(root1);
    assertIsRoot(root2);
    if (s[root2]<s[root1])  s[root1]=root2;
    else
    {  if(s[root1]==s[root2]) s[root1]--;
        // since the rank is stored as a negative, this makes the value have higher rank.
        s[root2]=root1;
    }
}
```

- Interesting theoretical results.
- Extremely slow growing, but not linear.
- Ackerman’s is a very fast growing function.
- Inverse of Ackerman’s function.
 - As n gets huge (in terms of number of times 2 is an exponent), the expected time for a find slightly increases.
Nearest Common Ancestor
Given any two nodes in a tree there is a shortest distance between them through a nearest common ancestor.

How would you solve?
1. Notice that any of my descendants have me as their nearest common ancestor.
2. How do we find common ancestors when one is not an ancestor of the others? Robert Tarjan discovered the technique in 1979.

Tarjan's algorithm is offline; that is, unlike other lowest common ancestor data structures, it requires that all pairs of nodes for which the lowest common ancestor is desired must be specified in advance. There are better algorithms now, but they use things we don’t know about.

- Problem: Given a tree and a list of pairs of nodes in the tree, find the nearest common ancestor for each pair of nodes.
- Consider the tree in Figure 8 with a pair list containing five requests: (x, y), (u, z), (w, x), (z, w), and (w, y).
 - The response is A, C, A, B, and y, respectively.

![Figure 16 Nearest common ancestor and pair sequence](image-url)
Pseudo Code for Nearest Common Ancestor

A node and all its processed descendants share the same group name. We use union/find for this.

The anchor is the current ancestor on the access path from the root.

marked: completely processed

When we set the anchor for the “group”, we need only change the root of the group, as all others in the group look to the root of the group for their anchor. This is the very reason we use union/find – so we DON’T have to change all descendents.

Some of the assignments to anchor appear to be redundant, but because union can change the group name, they are necessary.

The algorithm is “offline” – meaning we know all pairs we want a NCA for BEFORE we begin – “offline”.

NCA (Node * u)
{
 anchor[s.find(u->num)] = u;
 for each child c of u
 {
 NCA(c);
 s.union(s.find(u->num), s.find(c->num)); // Add child to its parent’s group.
 anchor[s.find(u->num)] = u;
 }
 u->marked = true;
 for each v such that NCA(u,v) is required
 {
 if (v->marked)
 cout << “NCA for (u,v) is” << anchor[s.find(v->num)] << endl;
 }
}

- The algorithm works as follows:
 o Perform a postorder tree traversal.
 o When we are about to return from processing a node, examine the pair list to determine whether any ancestor calculations are to be performed.
 o If u is the current node and (u, v) is in the pair list and we have previously finished the recursive call to v, we have enough information to determine NCA(u, v).
 o Note that it is the anchor of the previous node’s group (v’s group) that controls the NCA.
• Consider Figure 9 to understand how this algorithm works.

![Figure 9](image-url)

Figure 17 Sets explored prior to the return from the recursive call to D

- All nodes in the areas surrounded by a dotted line have been *visited*. Those in the same enclosure are in the same “group” – and share the same anchor.
- All recursive calls, but the one to *D*, have finished.
- A node is marked after all its descendants have been processed.
- The anchor of a marked node *v* is the node on the current path that is closest to *v*.
- *p*’s anchor is *A*, *q*’s anchor is *B*, and *r* is unanchored because it has yet to be marked.

• The visited nodes form an equivalence class.
 - Two nodes are related if they have the same anchor.
 - Each unvisited node is an equivalence class of its own.

• Suppose the *(D, v)* is in the pair list. Then we have three cases:
 - *v* is unmarked, so we have no information to compute NCA(*D, v*).
 - However, when *v* is marked, we will be able to determine NCA(*v, D*).
 - *v* is marked but not in *D*’s subtree, so NCA(*D, v*) is *v*’s anchor.
 - *v* is in *D*’s subtree, so NCA(*D, v*) = *D*.
 - Note that this is not a special case since *v*’s anchor is *D*.

• How do we determine the anchor of any visited node?
 - After the recursive call returns, we call union.
 - For example, after the recursive call to *D* returns, all nodes in *D* have their anchor changed from *D* to *C* by merging the two classes.
 - This is seen in Figure 10.
At any point, we can obtain the anchor for a vertex v by a call to find.