Chapter 6
Priority Queues

Introduction

- Want to delete from queue according to priority.
 - Max priority queue – delete the greatest.
 - Min priority queue – delete the least.
- Insert normally, but delete based on priority.
- We can implement priority queues using binary search trees, ordered or unordered lists, ordered or unordered arrays, etc.
- Let assume a linked list implementation.
 - Unordered
 - Insert – O(1).
 - Delete – O(n).
 - Ordered
 - Insert – O(n).
 - Delete – O(1).
- What if we used a BST? What would happen with successive deletes?
- A splay tree? What would happen with successive deletes? Is there a way of getting the good run time without having to have the expense of pointers?

Heaps

- Heap – complete binary tree in which each node is smaller than its parent.
 - Is this the same thing as a binary search tree (BST)?
- The binary tree for the heap is implemented as an array. This allows us easy access to children and parents as seen in the previous chapter.
- Used as a priority queue – regular insertion, priority deletion.
- Insertion – put the new node at the first empty position, and sift the element up (if needed). See Figure 1.
 - \(O(\text{height}) = O(\log n) \)

![Figure 1 Insertion into a Heap](image-url)
• **Deletion** – select root. Swap with last position (which will no longer be part of queue), and sift-down. See Figure 2.
 - \(O(\text{height}) = O(\log n) \)

![Figure 2 Deletion from Heap](image)

• **Initialization** – insert \(n \) items into tree \(O(n \log n) \) worst case BUT experiments have shown that on average, it only moves up an element 1.6 levels.
• This is an **implicit data structure** – no special structure need for heap except the binary tree. Thus no space overhead.
• In this algorithm, we need to be able to find a parent or a child (based on subscript).
• The book assumes the array begins at position 1, as the math is slightly easier. Using zero based addressing, the formula would be
 - \(\text{Children}(i) = 2i+1 \) and \(2i+2 \)
 - \(\text{Parent}(i) = (i-1)/2 \)
• NOTE: if we have a min heap, we can’t easily find the max or find any particular node.
• The operations **decreaseKey**, **increaseKey**, and **removeAtLocation** can be done fairly quickly if you know the location of the item in the queue.
 - Finding an item in a queue is very time consuming as there is no order.
 - Thus, a **decreaseKey** operation would need to keep track of the location of items separately.

Skip section 6.4

d-Heaps

• Like a heap (stored in an array) but has \(d \) kids.
• Shallower. Good for insertion. \(\log_d n \)
• Worse for deletion as have to look at all kids. \(d \log_d n \)
• Division/multiplication by \(d \) is worse (to find parents/kids).
 - Better if \(d \) is a power of 2 so shifting works.
• **Note**: for all heaps we have discussed, merging is bad.
6.6 Leftist Heaps

- To this point, we have focused on the height of a tree
- Define the *null path length* of a binary tree to be the shortest path from the root to a node without two children
- Define a leftist heap to be one where:
 - both sub-trees are leftist heaps, and
 - the left sub-tree has a null path length greater than or equal to the that of the right sub-tree
- The definition suggests a bias to the left, however, this should not suggest that the tree is necessarily left-heavy
- The following are leftist trees (null path length in red):

 ![Leftist Heaps Diagram]

- All leftist heaps with 1, 2, or 3 nodes:

 ![Leftist Heaps Diagram]

- All leftist heaps with four nodes:

 ![Leftist Heaps Diagram]

- Three of the four have more nodes to the left
• As there is no relation between the nodes in the sub-trees of a heap:
 o If both the left and right sub-trees are leftist heaps but the root does not form a leftist heap, we only need to swap the two sub-trees
 o We can use this to merge two leftist heaps
• Merging strategy:
 – Given two leftist heaps, recursively merge the larger value with the right sub-heap of the root
 – Traversing back to the root, swap trees to maintain the leftist heap property
• Dequeueing strategy:
 – remove the top node and merge the two sub-trees together

• Consider merging these two leftist heaps

• Comparing 3 and 4, we exchange the two heaps and merge the detached sub-heap with the right sub-heap of 3

• Comparing 4 and 5, we exchange the two heaps and merge the detached sub-heap with the right sub-heap of 4
• The right sub-heap of 4 is empty, and therefore we attach the heap with root 5

• The heaps are merged, but the result is not a leftist heap as 3 is unhappy.
• We must recurse to the root and swap sub-heaps where necessary. Find the unhappy nodes – after updating the null path lengths.
• Insert: Inserting merges the existing heap with a heap of size one

Delete Min
6.7 The Skew Heap

- Skew heap – heap-ordered binary tree without a balancing condition.
- With these, there is no guarantee that the depth of the tree is logarithmic.
- It supports all operations in logarithmic amortized time.
- It is somewhat like a splay tree in the way the time bound is figured.
- It is similar to a leftist heap, but with less space.

Merging

- Many operations with heap-ordered trees can be done using merging.
- Operations:
 - *Insert* – create a one-node tree containing x and merge that tree into the priority queue.
 - *Find minimum* – return the item at the root of the priority queue.
 - *Delete minimum* – delete the root and merge its left and right subtrees.
o Decrease the value of a node – assume that p points to the node in the priority queue. Lower the value of p’s key. Detach p from its parent, which yields two priority queues. Merge the two resulting priority queues.

The Skew Heap – A Simple Modification

- We can make a simple modification to the leftist heap and get similar results.
- Prior to the completion of a merge, we swap the left and right children for every node in the resulting right path of the temporary tree.
- Consider the example in Figure 3.

![Figure 3 Merging a skew heap](image)

- When a merge is performed in this way, the heap-ordered tree is also called a skew heap.
- Let’s consider this operation from a recursive point of view. Let L be the tree with the smaller root and R be the other tree.
 1. If one tree is empty, the other is the merged result.
 2. Otherwise, let $Temp$ be the right subtree of L.
 3. Make L’s left subtree its new right subtree.
 4. Make the result of the recursive merge of $Temp$ and R the new left subtree of L.
- The result of child swapping is that the length of the right path will not be unduly large all the time.
- The amortized time needed to merge two skew heaps is $O(\log n)$.
- Translated into code:

  ```c
  Node * SkewHeap::merge(Node * t1, Pair * t2)
  {
    Node *small, *big;
    if (t1==NULL) return t2;
    if (t2==NULL) return t1;
    if (t1->pri < t2->pri)
    {  small = t1; big = t2;
    }
    else
    {small = t2; big = t1;
    }
    Node * temp = small->right;
    small->right = small->left;
    small->left = merge(temp, big);
    return small;
  }
  ```

- Of course, it doesn’t matter whether you swap before or after you merge. If you merge first, and swap after, the process could be shown as:
6.8 Binomial Queues

- A binary heap provides $O(\log n)$ inserts and $O(\log n)$ deletes but suffers from $O(n \log n)$ merges
- A binomial queue offers $O(\log n)$ (average is constant time) inserts and $O(\log n)$ deletes and $O(\log n)$ merges
- A Binomial Queue is a collection of heap-ordered trees known as a forest. Each tree is a binomial tree. A recursive definition is:

1. A binomial tree of height 0 is a one-node tree.
2. A binomial tree, B_k, of height k is formed by attaching a binomial tree B_{k-1} to the root of another binomial tree B_{k-1}.

Examples

Questions:
1. How many nodes does the binomial tree B_k have?
2. How many children does the root of B_k have?
3. What types of binomial trees are the children of the root of B_k?
4. Is there a binomial queue with one node? With two nodes? With three nodes? … With n nodes for any positive integer n?

- When we want to find the minimum node, we just search all roots. How many roots could there be? What is the complexity?
- Consider Binary Addition

\[
\begin{array}{c}
\text{(carry)} & 1 & 1 \\
\hline
1 & 0 & 1 & 1 & 0 & 1 & 0 \\
+ & 0 & 0 & 1 & 1 & 1 & 0 & 0 \\
\hline
1 & 1 & 1 & 0 & 1 & 1 & 0
\end{array}
\]

- Example: Merge two binomial forests.
Merge two B_1 trees forming new B_2 tree

Merge two B_2 trees forming new B_3 tree

Merge two B_3 trees forming new B_4 tree (but which two B_2 trees?)

Merge two B_2 trees forming new B_3 tree
Implementing Binomial Queues

- Let a k-ary array point to each of the children, but let each subtree point to next smaller siblings (as in a general tree). Otherwise, each node would have to be k-ary.

Questions:
- We now know how to merge two binomial queues. How do you perform an *insert*?
- How do you perform a *deleteMin*?
- What is the order of complexity of a *merge*? an *insert*? a *delete*?