Chapter 7
Sorting

Terminology

- Internal – done totally in main memory.
- External – uses auxiliary storage (disk).
- Stable – retains original order if keys are the same.
- Oblivious – performs the same amount of work regardless of the actual input.
- Sort by address – uses indirect addressing so the record (structure) doesn’t have to be moved.
- Inversion – a pair of elements that is out of order. Important in determining a lower bound. The number of pairs of elements is \(\frac{n(n-1)}{2} \) (\(n \) ways to pick first, \(n-1 \) ways to pick the second, divide by two as order isn’t important). On average, only half of these pairs are out of order, so number of inversions is \(\frac{n(n-1)}{4} \). \(n^2 \) swaps of adjacent elements are required.

Selection Sort

- Select elements one at a time and place in proper final position.
- Repeatedly find the smallest.
- Code is shown in Figure 1.

Analysis: \(n + n -1 + n -2 + \ldots + 1 = n(n - 1)/2 \)
- Only \(n \) moves – use when records (structure) are long.
- Requires \(n^2 / 2 \) compares even when already sorted – Oblivious.
- Unstable – because it may swap the element in the last location past other instances of itself.

```cpp
template<class T>
void SelectionSort(T a[], int n)
{// Sort the n elements a[0:n-1].
  for (int size = n; size > 1; size--)
  {
    int j = Max(a, size); // loop
    Swap(a[j], a[size - 1]);
  } // for
} // SelectionSort
```

Figure 1 Selection Sort

```cpp
void bubble(Data[] a, int size)
{
  for (int i = 0; i < size - 1; i++)
  {
    bool hasSwapped = false;
    for (int j = 0; j < size-1-i; j++)
      if (a[j].value > a[j+1].value)
        { // hasSwapped = true;
          swap(a[j],a[j+1]);
        }
    if (!hasSwapped)return;
  }
}
```

Figure 2 Bubble Sort
Bubble Sort

- Compares adjacent elements – exchanges if out of order.
- Lists get smaller each time – at least one is placed in final order.
- Place of last swap is as much as you have to look at. Quit if you do no swaps
- Code is shown in Figure 2.
- Stable
- Oblivious – if the flag is not included
- Analysis: \(n + n - 1 + n - 2 + \ldots + 1 = n(n - 1) / 2 \)

Insertion Sort

- Sorts by inserting records into an already existing sorted file.
- Two groups of keys - sorted and unsorted.
- Code is shown in Figure 3.
- Insert \(n \) times - each time move \(\frac{1}{2} \) elements to insert.
- The number of elements in the list changes so
 \(\frac{1}{2} (1 + 2 + 3 + \ldots + n) = \frac{1}{2} \times \frac{1}{2} n(n + 1) = \frac{1}{4} n^2 \)
- 11 5 17 1 21
 5 11 17 1 21
 1 5 11 17 21
 1 5 11 17 21
- Performs better when the degree of unsortedness is low – recommended for data that is nearly sorted. Non-Oblivious as if new element to be added is greater than last element of sorted part, we do not have to look at anything else.
- Stable as never swap with other than an adjacent element
- Improvements
 1. Use binary search \(O(n \log n) \) compares, but number of moves doesn’t change so no real gain.
 2. Linked list storage – can’t use binary search – still \(O(n^2) \).
- Could use sentinel containing the key search until \(p->info.key >= q->info.key \)
- Sentinel is extra item added to one end of the list so ensure that the loop terminates without having to include a separate check.

Shell Sort

- A subquadratic algorithm whose code is only slightly longer than insertion sort, making it the simplest of the faster algorithms.
• Avoid large amounts of data movement by:
 o Comparing elements that are far apart.
 o Comparing elements that are less far apart.
 o Gradually shrinks toward insertion sort.
• Consider Figure 4, which shows an example of shell sort with the increment sequence of \{5, 3, 1\}.

| Original | 81 94 11 96 12 35 17 95 28 58 41 75 15 |
|---------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| After 5-sort | 35 17 11 28 12 41 75 15 96 58 81 94 95 |
| After 3-sort | 28 12 11 35 15 41 58 17 94 75 81 96 95 |
| After 1-sort | 11 12 15 17 28 35 41 58 75 81 94 95 96 |

Figure 4 Shell Sort

• Shell sort is known as a diminishing gap sort.
• The code for Shell sort is shown in Figure 5.
• Worst case running time is \(O(n^2)\).
• When the gap goes to 1, the sort is essentially an insertion sort.
• Can get bad running times if all big numbers are at even positions and all small numbers are at odd positions and the gaps don’t rearrange them as they are always even.
• The average running time appears to be between \(O(n^{5/4})\) – \(O(n^{7/6})\) if we use a gap of 2.2.
• Reasonable sort for large inputs. Complicated analysis.
• **Unstable** – as when your gap is five, you swap elements five apart – ignoring duplicates that lie between.
• **Non-oblivious** – as builds off insertion sort, which is non-oblivious.

Heap Sort

• The process goes as follows:
 o Build a min heap
 o While the heap isn’t empty, deleteMin.
• Complexity – \(\mathcal{O}(n \log n)\)
• **Unstable**
• **Non-oblivious**
Divide and Conquer

- Divide and Conquer is a method of algorithm design that has created such efficient algorithms as Merge Sort.
- In terms of algorithms, this method has three distinct steps:
 - **Divide**: If the input size is too large to deal with in a straightforward manner, divide the data into two or more disjoint subsets.
 - **Recur**: Use divide and conquer to solve the subproblems associated with the data subsets.
 - **Conquer**: Take the solutions to the subproblems and “merge” these solutions into a solution for the original problem.
- The next two sorts are divide and conquer algorithms: MergeSort and QuickSort.

Merge Sort

- Chop the lists into two sublists. Sort the two pieces. Combine by merging. (Some techniques just get sublists of larger and larger powers of two.)
- The pieces may also be sorted via MergeSort, so it is recursive.
- What would the code look like for MergeSort?
- The code for Merge is shown in Figure 6.
- In merging sublists of length \(n \), clearly no more than \(2n \) compares are required. Actually it is less than this, but it is easy to count this way.
- Each level takes exactly \(n \) compares and there are \(\log n \) levels, the complexity is \(O(n \log n) \).
- A closer count is \(n \log n - 1.25n + 1 \) (by running test cases)
- If linked lists, no problem with storage space. If we have an array of items to be stored, the MergeSort requires an auxiliary storage array.
- Hardly ever used for main memory sorts because of the extra memory. Works well for external sorts (not all data is in memory at the same time) as doesn’t need to see entire data (like a quicksort does).
- **Stable**, as control order when merging
- **Oblivious** as it does the same amount of work regardless of initial order.

```
template<class T>
void Merge(T c[], T d[], int l, int m, int r) {
// Merge c[l:m] and c[m:r] to d[l:r].
    int i = 1,    // cursor for first segment
        j = m+1,  // cursor for second
        k = 1;    // cursor for result

    while ((i <= m) && (j <= r))
        if (c[i] <= c[j]) d[k++] = c[i++];
        else d[k++] = c[j++];

    if (i > m) for (int q = j; q <= r; q++)
        d[k++] = c[q];
    else for (int q = i; q <= m; q++)
        d[k++] = c[q];
}
```
Quick Sort

- In practice, is the fastest sorting algorithm known. Better than merge sort as partitioning is faster than merging.
- Partition the set into two sets: those elements less than \(j \) and those elements greater than \(j \). \(j \) is called the pivot.
- Often done as: Use two pointers – top pointer looks for a value smaller than \(j \), bottom pointer looks for a value larger than \(j \). Then interchange. This does only a third as many swaps.
- Apply recursively.
- The code for QuickSort is shown in Figure 7.
- Analysis: At each level, all elements of the array are examined. The number of levels depends on how equally the pieces are divided. Best case: \(\log n \) levels yielding \(O(n \log n) \).
- Worst case: Divide unequally, let \(n \) be the size of the array to be sorted:
 \[
 C(n) = n - 1 + C(n - 1) = n(n - 1)/2
 \]
- Space requirement: depends on recursive stacking.
- Unstable – as you swap elements far apart during partition (without considering equal element between)
- Not only can quicksort NOT take advantage of partial ordering, it actually gets worse when the file is in order. This is because it doesn’t divide the array in half, so the depth of recursion is \(n \) instead of \(\log n \). A bad thing for complexity, right? This is worse than being oblivious. We could call it dangerously-oblivious – it not only fails to take advantage of existing order, it gets worse!!!
- Improvements
 1. Use median of three so don’t get a bad pivot. (if sort in place, get sentinels)
 2. Use sentinel at each end so don’t have to check (avoid left and right crossing)
 3. Switch to insertion sort when size gets small - can do one big insertion sort on all, but it is recommended to sort the pieces separately because of caching.
 4. Swap elements equal to pivot as partitioning tends to divide chunks of equal nodes in half.

```cpp
template<class T>
void QuickSort( T a[], int l, int r )
{
  if ( l >= r ) return;
  int i = l,      // left-to-right cursor
     j = r + 1;  // right-to-left cursor
  T pivot = a[l];
  while ( true ) {
    do {// find >= element on left side
      i = i + 1;
    } while (a[i] < pivot);
    do {// find <= element on right side
      j = j - 1;
    } while ( a[j] > pivot );
    if ( i >= j ) break;  // swap pair not found
    Swap( a[i], a[j] );
  } // while
  a[l] = a[j];
a[j] = pivot;
  QuickSort( a, l, j-1 ); // sort left segment
  QuickSort( a, j+1, r ); // sort right segment
} // QuickSort
```

Figure 7 Quick Sort
Final Thought

- In Figure 8, notice that QuickSort and MergeSort have a similar program structure.
- Both have $O(n)$ work to either
 1. Divide into chunks or
 2. Put the chunks back together.
- The pictures we draw (for expected case) look the same.
- The formula analysis looks the same.
- We see it doesn’t matter whether we do the work before the recursion or after. The work is the same.

```cpp
QuickSort(a[], low, high) {
  pivot = partition(a, low, high)
  QuickSort(a, low, pivot-1)
  QuickSort(a, pivot+1, high)
} // QuickSort
```

```cpp
MergeSort(a[], low, high) {
  mid=(low+high)/2
  MergeSort(a, low, mid)
  MergeSort(a, mid+1, high)
  Merge(a, low, mid, high)
} // MergeSort
```

Figure 8 QuickSort and MergeSort

Quickselect

- Find the k^{th} smallest element in an array of N items.
- We can do better than sorting the array first.
- The solution is to have an algorithm that is similar to QuickSort but with only one recursive call.
- The steps of the algorithm are as follows:
 1. If the number of elements in S is 1, return the single element in S.
 2. Pick any element v in S. It is the pivot.
 3. Partition $S - \{v\}$ into L and R, exactly as was done with quicksort.
 4. If $k \leq$ number of elements in L, the item we are searching for must be in L. Call $Quickselect(L, k)$ recursively. Otherwise, if k is exactly equal to 1 more than the number of items in L, the pivot is the k^{th} smallest element, and we can return it as the answer. Otherwise, the k^{th} smallest element lies in R, and it is the $(k - |L| - 1)^{th}$ smallest element in R. Again, we can make a recursive call and return the result.
- Notice that only one recursive call is made.
- If the pivot is chosen correctly, it can be shown, that even in the worst case, the running time is linear.

Indirect Sorting

- If we are sorting an array whose elements are large, copying the items can be very expensive.
- We can get around this by doing indirect sorting.
 - We have an additional array of pointers where each element of the pointer array points to an element in the original array.
 - When sorting, we compare keys in the original array but we swap the element in the pointer array.
• This saves a lot of copying at the expense of indirect references to the elements of the original array.
• We must still rearrange the final array. The text has a clever way of doing that. It involves pointer arithmetic and shuffles cycles of shifts. Basically,
 o Find a ptr[i] which is not pointing to the ith element of a.
 o Save the thing in the ith element of a.
 o Move the correct a element into the ith location freeing up the nextj location
 o Now move the thing that wants to be in the nextj location to it. We know what that element is because it is p[nextj].
 o Repeat until we reach something that is in its final position. This shuffling could rearrange every element, but likely a smaller cycle of elements is shifted.