Chapter 7

Performance Analysis

Learning Objectives

- Predict performance of parallel programs
- Understand barriers to higher performance
Speedup Formula

\[
\text{Speedup} = \frac{\text{Sequential execution time}}{\text{Parallel execution time}}
\]

Execution Time Components

- Inherently sequential computations: \(\sigma(n) \)
- Potentially parallel computations: \(\varphi(n) \)
- Parallel overhead: \(\kappa(n,p) \)
 - Communication
 - Redundant operations
Speedup Expression

\[\psi(n, p) \leq \frac{\sigma(n) + \phi(n)}{\sigma(n) + \phi(n) / p + \kappa(n, p)} \]
Communication Component - $\kappa(n,p)$

$\varphi(n)/p + \kappa(n,p)$
Speedup Plot

“elbowing out”

Efficiency

Speedup = \frac{\text{Sequential execution time}}{\text{Processors} \times \text{Parallel execution time}}

\text{Speedup} = \frac{\text{Speedup}}{\text{Processors}}
Efficiency \(0 \leq \epsilon(n,p) \leq 1\)

\[
\epsilon(n, p) \leq \frac{\sigma(n) + \phi(n)}{p \sigma(n) + \phi(n) + p \kappa(n, p)}
\]

All terms > 0 \(\Rightarrow \epsilon(n,p) > 0\)

Denominator > numerator \(\Rightarrow \epsilon(n,p) < 1\)

Amdahl’s Law

- Provides an upper bound on the speedup achievable by applying a certain number of processors to solve the problem in parallel
- Can be used to determine the asymptotic speedup achievable as the number of processors increases
Amdahl’s Law

The speedup of a program using multiple processors in parallel computing is limited by the sequential fraction of the program. For example, if 95% of the program can be parallelized, the theoretical maximum speedup using parallel computing would be $20\times$ as shown in the diagram, no matter how many processors are used.

Let $f = \frac{\sigma(n)}{\sigma(n) + \phi(n)}$

$$\psi(n, p) \leq \frac{\sigma(n) + \phi(n)}{\sigma(n) + \phi(n) / p + \kappa(n, p)} \leq \frac{\sigma(n) + \phi(n)}{\sigma(n) + \phi(n) / p}$$

$$\psi \leq \frac{1}{f + (1 - f) / p}$$
Example 1

- 95% of a program’s execution time occurs inside a loop that can be executed in parallel.
- What is the maximum speedup we should expect from a parallel version of the program executing on 8 CPUs?

\[
\psi \leq \frac{1}{0.05 + (1 - 0.05)/8} \approx 5.9
\]

Example 2

- 20% of a program’s execution time is spent within inherently sequential code. What is the limit to the speedup achievable by a parallel version of the program?

\[
\lim_{p \to \infty} \frac{1}{0.2 + (1 - 0.2)/p} = \frac{1}{0.2} = 5
\]
Pop Quiz

- An oceanographer gives you a serial program and asks you how much faster it might run on 8 processors. You can only find one function amenable to a parallel solution. Benchmarking on a single processor reveals 80% of the execution time is spent inside this function. What is the best speedup a parallel version is likely to achieve on 8 processors?

Pop Quiz

- A computer animation program generates a feature movie frame-by-frame. Each frame can be generated independently and is output to its own file. If it takes 99 seconds to render a frame and 1 second to output it, how much speedup can be achieved by rendering the movie on 100 processors?
Limitations of Amdahl’s Law

- Ignores $\kappa(n,p)$
- Overestimates speedup achievable

Amdahl Effect

- Typically $\kappa(n,p)$ has lower complexity than $\varphi(n)/p$
- As n increases, $\varphi(n)/p$ dominates $\kappa(n,p)$
- As n increases, speedup increases
- For a fixed number of processors, speedup is usually an increasing function of the problem size
Illustration of Amdahl Effect

Review of Amdahl’s Law

- Treats problem size as a constant
- Shows how execution time decreases as number of processors increases
Another Perspective

- We often use faster computers to solve larger problem instances
- Let’s treat time as a constant and allow problem size to increase with number of processors

Gustafson-Barsis’s Law

Given a parallel program solving a problem of size n using p processors, let s denote the fraction of total execution time spent in serial code. The maximum speedup achievable by this program is

$$\psi \leq p + (1 - p)s$$
Gustafson-Barsis’s Law

\[\psi(n, p) \leq \frac{\sigma(n) + \varphi(n)}{\sigma(n) + \varphi(n) / p} \]

Let \(s = \sigma(n)/(\sigma(n)+\varphi(n)/p) \)

\[\psi \leq p + (1 - p)s \]
Example 1

- An application running on 10 processors spends 3% of its time in serial code. What is the scaled speedup of the application?

\[\psi = 10 + (1 - 10)(0.03) = 10 - 0.27 = 9.73 \]

...except 9 do not have to execute serial code

Execution on 1 CPU takes 10 times as long...

Example 2

- What is the maximum fraction of a program’s parallel execution time that can be spent in serial code if it is to achieve a scaled speedup of 7 on 8 processors?

\[7 = 8 + (1 - 8)s \implies s \approx 0.14 \]
Pop Quiz

- A parallel program executing on 32 processors spends 5% of its time in sequential code. What is the scaled speedup of this program?

The Karp-Flatt Metric

- Amdahl’s Law and Gustafson-Barsis’ Law ignore $\kappa(n,p)$
- They can overestimate speedup or scaled speedup
- Karp and Flatt proposed another metric
Experimentally Determined Serial Fraction

\[e = \frac{\sigma(n) + \kappa(n, p)}{\sigma(n) + \varphi(n)} \]

Inherently serial component of parallel computation + processor communication and synchronization overhead

\[e = \frac{1/\psi - 1/p}{1 - 1/p} \]

Single processor execution time

- Takes into account parallel overhead
- Detects other sources of overhead or inefficiency ignored in speedup model
 - Process startup time
 - Process synchronization time
 - Imbalanced workload
 - Architectural overhead
Example 1

<table>
<thead>
<tr>
<th>p</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>ψ</td>
<td>1.8</td>
<td>2.5</td>
<td>3.1</td>
<td>3.6</td>
<td>4.0</td>
<td>4.4</td>
<td>4.7</td>
</tr>
</tbody>
</table>

What is the primary reason for speedup of only 4.7 on 8 CPUs?

| e | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 |

Since e is constant, large serial fraction is the primary reason.

Example 2

<table>
<thead>
<tr>
<th>p</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>ψ</td>
<td>1.9</td>
<td>2.6</td>
<td>3.2</td>
<td>3.7</td>
<td>4.1</td>
<td>4.5</td>
<td>4.7</td>
</tr>
</tbody>
</table>

What is the primary reason for speedup of only 4.7 on 8 CPUs?

| e | 0.070 | 0.075 | 0.080 | 0.085 | 0.090 | 0.095 | 0.100 |

Since e is steadily increasing, overhead is the primary reason.
Pop Quiz

<table>
<thead>
<tr>
<th>p</th>
<th>4</th>
<th>8</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>ψ</td>
<td>3.9</td>
<td>6.5</td>
<td>?</td>
</tr>
</tbody>
</table>

- Is this program likely to achieve a speedup of 10 on 12 processors?

Isoefficiency Metric

- Parallel system: parallel program executing on a parallel computer
- Scalability of a parallel system: measure of its ability to increase performance as number of processors increases
- A scalable system maintains efficiency as processors are added
- Isoefficiency: way to measure scalability
Isoefficiency Derivation Steps

- Begin with speedup formula
- Compute total amount of overhead
- Assume efficiency remains constant
- Determine relation between sequential execution time and overhead

Deriving Isoefficiency Relation

Determine overhead

\[T_o(n, p) = (p - 1)\sigma(n) + p\kappa(n, p) \]

Substitute overhead into speedup equation

\[\psi(n, p) \leq \frac{p(\sigma(n) + \varphi(n))}{\sigma(n) + \varphi(n) + T_0(n, p)} \]

Substitute \(T(n,1) = \sigma(n) + \varphi(n) \). Assume efficiency is constant.

\[T(n,1) \geq CT_0(n, p) \] Isoefficiency Relation
Isoefficiency Relation

In order to maintain the same level of efficiency as the number of processors increases, n must be increased so that the following inequality is satisfied where $T(n,1)$ and $CT_0(n,p)$ are as defined in the book

$$T(n,1) \geq CT_0(n, p)$$

Scalability Function

- Suppose isoefficiency relation is $n \geq f(p)$
- Let $M(n)$ denote memory required for problem of size n
- $M(f(p))/p$ shows how memory usage per processor must increase to maintain same efficiency
- We call $M(f(p))/p$ the scalability function
Meaning of Scalability Function

- To maintain efficiency when increasing p, we must increase n
- Maximum problem size limited by available memory, which is linear in p
- Scalability function shows how memory usage per processor must grow to maintain efficiency
- Scalability function a constant means parallel system is perfectly scalable

Interpreting Scalability Function

- $C p \log p$: Cannot maintain efficiency
- $C p$: Cannot maintain efficiency
- $C \log p$: Can maintain efficiency
- C: Can maintain efficiency

Memory needed per processor vs. Number of processors
Example 1: Reduction

- Sequential algorithm complexity
 \[T(n,1) = \Theta(n) \]

- Parallel algorithm
 - Computational complexity = \(\Theta(n/p) \)
 - Communication complexity = \(\Theta(\log p) \)

- Parallel overhead
 \[T_\delta(n,p) = \Theta(p \log p) \]

Reduction (continued)

- Isoefficiency relation: \(n \geq C \cdot p \cdot \log p \)
- We ask: To maintain same level of efficiency, how must \(n \) increase when \(p \) increases?
- \(M(n) = n \)

\[
\frac{M(C\cdot p\log p)}{p} = \frac{C\cdot p\log p}{p} = C\log p
\]

- The system has good scalability
Example 2: Floyd’s Algorithm

- Sequential time complexity: $\Theta(n^3)$
- Parallel computation time: $\Theta(n^3/p)$
- Parallel communication time: $\Theta(n^2 \log p)$
- Parallel overhead: $T_\theta(n,p) = \Theta(pn^2 \log p)$

Floyd’s Algorithm (continued)

- Isoefficiency relation
 $n^3 \geq C(p \cdot n^3 \log p) \Rightarrow n \geq C \cdot p \log p$
- $M(n) = n^2$

 \[
 M(Cp \log p) / p = C^2 \cdot p^2 \log^2 p / p = C^2 \cdot p \log^2 p
 \]
- The parallel system has poor scalability
Example 3: Finite Difference

- Sequential time complexity per iteration: $\Theta(n^2)$
- Parallel communication complexity per iteration: $\Theta(n/\sqrt{p})$
- Parallel overhead: $\Theta(n \sqrt{p})$

Finite Difference (continued)

- Isoefficiency relation
 $n^2 \geq Cn\sqrt{p} \Rightarrow n \geq C\sqrt{p}$
- $M(n) = n^2$

 $$M(C\sqrt{p}) / p = C^2 p / p = C^2$$

- This algorithm is perfectly scalable
Summary

- Performance terms
 - Speedup
 - Efficiency
- Model of speedup
 - Serial component
 - Parallel component
 - Communication component

What prevents linear speedup?
- Serial operations
- Communication operations
- Process start-up
- Imbalanced workloads
- Architectural limitations
Summary

- Analyzing parallel performance
 - Amdahl’s Law
 - Gustafson-Barsis’ Law
 - Karp-Flatt metric
 - Isoefficiency metric

Amdahl’s Law

- Based on the assumption that we are trying to solve a problem of fixed size as quickly as possible
 - Provides an upper bound on the speedup achievable by applying a certain number of processors to solve the problem in parallel
 - Can be used to determine the asymptotic speedup achievable as the number of processors increases
Gustafson-Barsis’s Law

- Time is treated as a constant and we let the problem size increase with the number of processors
- It begins with a parallel computation and estimates how much faster the parallel computation is than the same computation executing on a single processor
- Called scaled speedup

Karp-Flatt Metric

- Takes into account parallel overhead
- Helps detect other sources of overhead or inefficiency
- For a fixed problem size, the efficiency of a parallel computation typically decreases as the number of processors increase
 - By using the experimentally determined serial fraction, can determine whether the efficiency decrease is due to:
 - Limited opportunities for parallelism
 - Increases in algorithmic or architectural overhead