Parallel Programming
in C with MPI and OpenMP

Michael J. Quinn

Chapter 11

Matrix Multiplication
Outline

- Sequential algorithms
 - Iterative, row-oriented
 - Recursive, block-oriented
- Parallel algorithms
 - Rowwise block striped decomposition
 - Cannon’s algorithm

Iterative, Row-oriented Algorithm

Series of inner product (dot product) operations

\[
\begin{array}{c}
\text{×} \\
= \\
\end{array}
\]

Performance as n Increases

Reason: Matrix B Gets Too Big for Cache

Computing a row of C requires accessing every element of B
Block Matrix Multiplication

Replace scalar multiplication with matrix multiplication
Replace scalar addition with matrix addition

Recurse Until B Small Enough
Comparing Sequential Performance

First Parallel Algorithm

- **Partitioning**
 - Divide matrices into rows
 - Each primitive task has corresponding rows of three matrices

- **Communication**
 - Each task must eventually see every row of B
 - Organize tasks into a ring
First Parallel Algorithm (cont.)

- Agglomeration and mapping
 - Fixed number of tasks, each requiring same amount of computation
 - Regular communication among tasks
 - Strategy: Assign each process a contiguous group of rows

Communication of B
Communication of B

Communication of B
Communication of B

Complexity Analysis

- Algorithm has p iterations
- During each iteration a process multiplies $(n) \times (n / p)$ block of A by $(n / p) \times n$ block of B: $\Theta(n^3 / p^2)$
- Total computation time: $\Theta(n^3 / p)$
- Each process ends up passing $(p-1)n^2/p = \Theta(n^2)$ elements of B
Isoefficiency Analysis

- Sequential algorithm: $\Theta(n^3)$
- Parallel overhead: $\Theta(pn^2)$

Isoefficiency relation: $n^3 \geq Cpn^2 \Rightarrow n \geq Cp$

$$M(Cp) / p = C^2 p^2 / p = C^2 p$$

- This system does not have good scalability

Weakness of Algorithm 1

- Blocks of B being manipulated have p times more columns than rows
- Each process must access every element of matrix B
- Ratio of computations per communication is poor: only $2n / p$
Parallel Algorithm 2
(Cannon’s Algorithm)

- Associate a primitive task with each matrix element
- Agglomerate tasks responsible for a square (or nearly square) block of C
- Computation-to-communication ratio rises to n / \sqrt{p}

Elements of A and B Needed to Compute a Process’s Portion of C

Algorithm 1

Cannon’s Algorithm
Blocks Must Be Aligned

<table>
<thead>
<tr>
<th>A_{0,0}</th>
<th>A_{0,1}</th>
<th>A_{0,2}</th>
<th>A_{0,3}</th>
</tr>
</thead>
<tbody>
<tr>
<td>B_{0,0}</td>
<td>B_{0,1}</td>
<td>B_{0,2}</td>
<td>B_{0,3}</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>A_{1,0}</th>
<th>A_{1,1}</th>
<th>A_{1,2}</th>
<th>A_{1,3}</th>
</tr>
</thead>
<tbody>
<tr>
<td>B_{1,0}</td>
<td>B_{1,1}</td>
<td>B_{1,2}</td>
<td>B_{1,3}</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>A_{2,0}</th>
<th>A_{2,1}</th>
<th>A_{2,2}</th>
<th>A_{2,3}</th>
</tr>
</thead>
<tbody>
<tr>
<td>B_{2,0}</td>
<td>B_{2,1}</td>
<td>B_{2,2}</td>
<td>B_{2,3}</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>A_{3,0}</th>
<th>A_{3,1}</th>
<th>A_{3,2}</th>
<th>A_{3,3}</th>
</tr>
</thead>
<tbody>
<tr>
<td>B_{3,0}</td>
<td>B_{3,1}</td>
<td>B_{3,2}</td>
<td>B_{3,3}</td>
</tr>
</tbody>
</table>

Blocks Need to Be Aligned

Each triangle represents a matrix block.

Only same-color triangles should be multiplied.
Rearrange Blocks

Block \(A_{ij} \) cycles left \(i \) positions

Block \(B_{ij} \) cycles up \(j \) positions

Consider Process \(P_{1,2} \)

Step 1
Consider Process $P_{1,2}$

Step 2

Consider Process $P_{1,2}$

Step 3
Consider Process $P_{1,2}$

Step 4

Complexity Analysis

- Algorithm has \sqrt{p} iterations
- During each iteration process multiplies two $(n / \sqrt{p}) \times (n / \sqrt{p})$ matrices: $\Theta(n^3 / p^{3/2})$
- Computational complexity: $\Theta(n^3 / p)$
- During each iteration process sends and receives two blocks of size $(n / \sqrt{p}) \times (n / \sqrt{p})$
- Communication complexity: $\Theta(n^2 / \sqrt{p})$
Isoefficiency Analysis

- Sequential algorithm: $\Theta(n^3)$
- Parallel overhead: $\Theta(\sqrt{pn^2})$

Isoefficiency relation: $n^3 \geq C \sqrt{pn^2} \Rightarrow n \geq C \sqrt{p}$

$$M(C\sqrt{p})/p = C^2 p/p = C^2$$

- This system is highly scalable

Summary

- Considered two sequential algorithms
 - Iterative, row-oriented algorithm
 - Recursive, block-oriented algorithm
 - Second has better cache hit rate as n increases
- Developed two parallel algorithms
 - First based on rowwise block striped decomposition
 - Second based on checkerboard block decomposition
 - Second algorithm is scalable, while first is not