Chapter 6
Priority Queues

Introduction

- Want to delete from queue according to priority.
 - Max priority queue – delete the greatest.
 - Min priority queue – delete the least.
- Insert normally, but delete based on priority.
- We can implement priority queues using binary search trees, ordered or unordered lists, ordered or unordered arrays, etc.
- Let assume a linked list implementation.
 - Unordered
 - Insert – $O(1)$.
 - Delete – $O(n)$.
 - Ordered
 - Insert – $O(n)$.
 - Delete – $O(1)$.
- What if we used a BST? What would happen with successive deletes?
- A splay tree? What would happen with successive deletes? Is there a way of getting the good run time without having to have the expense of pointers?

Heaps

- Heap – complete binary tree in which each node is smaller than its parent.
 - Is this the same thing as a binary search tree (BST)?
- The binary tree for the heap is implemented as an array. This allows us easy access to children and parents as seen in the previous chapter.
- Used as a priority queue – regular insertion, priority deletion.
- Insertion – put the new node at the first empty position, and sift the element up (if needed). See Figure 1.
 - $O(\text{height}) = O(\log n)$

![Figure 1 Insertion into a Heap](image-url)
• **Deletion** – select root. Swap with last position (which will no longer be part of queue), and sift-down. See Figure 2.
 - O(height) = O(log n)

![Figure 2 Deletion from Heap](image)

- **Initialization** – insert n items into tree O(n log n) worst case BUT experiments have shown that on average, it only moves up an element 1.6 levels.
- This is an **implicit data structure** – no special structure need for heap except the binary tree. Thus no space overhead.
- In this algorithm, we need to be able to find a parent or a child (based on subscript).
- The book assumes the array begins at position 1, as the math is slightly easier. Using zero based addressing, the formula would be
 - Children(i) = 2i+1 and 2i+2
 - Parent(i) = (i-1)/2
- NOTE: if we have a min heap, we can’t easily find the max or find any particular node.
- The operations decreaseKey, increaseKey, and removeAtLocation can be done fairly quickly if you know the location of the item in the queue.
 - Finding an item in a queue is very time consuming as there is no order.
 - Thus, a decreaseKey operation would need to keep track of the location of items separately.

Skip section 6.4

d-Heaps

- Like a heap (stored in an array) but has d kids.
- Shallower. Good for insertion. \(\log_d n \)
- Worse for deletion as have to look at all kids. \(d \log_d n \)
- Division/multiplication by \(d \) is worse (to find parents/kids).
 - Better if \(d \) is a power of 2 so shifting works.
- **Note:** for all heaps we have discussed, merging is bad.
6.6 Leftist Heaps

- To this point, we have focused on the height of a tree
- Define the null path length of a binary tree to be the shortest path from the node to a node without two children
- Define a leftist heap to be one where:
 - both sub-trees are leftist heaps, and
 - the left sub-tree has a null path length greater than or equal to that of the right sub-tree
- The definition suggests a bias to the left, however, this should not suggest that the tree is necessarily left-heavy
- These examples use a min heap – but the idea is the same for a max heap.
- The following are leftist trees (null path length in red):

![Leftist Trees](image)

- All leftist heaps with 1, 2, or 3 nodes:

![Leftist Heaps with 1, 2, or 3 Nodes](image)

- All leftist heaps with four nodes:

![Leftist Heaps with Four Nodes](image)

- Three of the four have more nodes to the left
• As there is no relation between the nodes in the sub-trees of a heap:
 o If both the left and right sub-trees are leftist heaps but the root does not form a leftist heap,
 We only need to swap the two sub-trees
 o We can use this to merge two leftist heaps

• Merging strategy:
 – Given two leftist heaps, recursively merge the larger value with the right sub-heap of the root
 – Traversing back to the root, swap trees to maintain the leftist heap property

Node * Merge (Node * t1, Node *& t2) // t1 and t2 are merged, yielding t1
{ if (t1==NULL) return t2;
if (t2==NULL) return t1;
if (t1 ->element < t2->element)
 { t1->right = merge(t1->right, t2);
 root=t1;
 }
else
 {
 t2->right = merge(t2->right, t1);
 root=t2
 }
if (notLeftist(root)) swapkids(root);
setLeftist(root);
return root;
}

• Dequeuing strategy:
 – remove the top node and merge the two sub-trees together

• Consider merging these two leftist min heaps

• Comparing 3 and 4, we exchange the two heaps and merge the detached sub-heap with the right sub-heap of 3
• Comparing 4 and 5, we exchange the two heaps and merge the detached sub-heap with the right sub-heap of 4

![Diagram]

• The right sub-heap of 4 is empty, and therefore we attach the heap with root 5

![Diagram]

• The heaps are merged, but the result is not a leftist heap as 3 is unhappy.
• On the way back to the root and swap sub-heaps where necessary. Find the unhappy nodes – after updating the null path lengths.
- **Insert**: Inserting merges the existing heap with a heap of size one

Delete Min
6.7 The Skew Heap

- Skew heap – heap-ordered binary tree without a balancing condition.
- With these, there is no guarantee that the depth of the tree is logarithmic.
- It supports all operations in logarithmic **amortized time**.
- It is somewhat like a splay tree in the way the time bound is figured.
- It is similar to a leftist heap, but with less space.

Merging

- Many operations with heap-ordered trees can be done using merging.
- Operations:
 - Insert – create a one-node tree containing \(x \) and merge that tree into the priority queue.
 - Find minimum – return the item at the root of the priority queue.
 - Delete minimum – delete the root and merge its left and right subtrees.
 - Decrease the value of a node – assume that \(p \) points to the node in the priority queue. Lower the value of \(p \)'s key. Detach \(p \) from its parent, which yields two priority queues. Merge the two resulting priority queues.

The Skew Heap – A Simple Modification

- We can make a simple modification to the leftist heap and get similar results.
- We always merge with the right child, but after merging, we swap the left and right children for every node in the resulting right path of the temporary tree.
- Consider the example in Figure 3.

![Figure 3 Merging a skew heap](image)

- When a merge is performed in this way, the heap-ordered tree is also called a skew heap.
- Let’s consider this operation from a recursive point of view. Let \(L \) be the tree with the smaller root and \(R \) be the other tree.
 1. If one tree is empty, the other is the merged result.
 2. If \(t \) is the tree with the smaller value, Let \(t->right = merge(t->right, other) \)
 3. Swap the kids of \(t \)
- The result of child swapping is that the length of the right path will not be unduly large all the time.
- The amortized time needed to merge two skew heaps is \(O(\log n) \).
- Translated into code:
  ```cpp
  Node * SkewHeap::merge(Node * t1, Pair * t2)
  ```
{ Node *small, *big;
 if (t1==NULL) return t2;
 if (t2==NULL) return t1;
 if (t1->element< t2->element)
 { small = t1; big = t2;
 }
 else
 {small = t2; big = t1;
 }
 small->right = merge(small->right, big);
 Node * temp = small->right;
 small->right = small->left;
 small->left = temp;
 return small;
}

For example:
6.8 Binomial Queues

- A binary heap provides $O(\log n)$ inserts and $O(\log n)$ deletes but suffers from $O(n \log n)$ merges
- A binomial queue offers $O(\log n)$ (average is constant time) inserts and $O(\log n)$ deletes and $O(\log n)$ merges
- A Binomial Queue is a collection of heap-ordered trees known as a forest. Each tree is a binomial tree. A recursive definition is:

 1. A binomial tree of height 0 is a one-node tree.
 2. A binomial tree, B_k, of height k is formed by attaching a binomial tree B_{k-1} to the root of another binomial tree B_{k-1}.

Examples

![Diagram of binomial trees]

Note that to store any number of nodes we need multiple B_k trees.
The following pictures shows a binomial queue of 11 nodes

Questions:

1. How many nodes does the binomial tree B_k have?
2. How many children does the root of B_k have?
3. What types of binomial trees are the children of the root of B_k?
4. Is there a binomial queue with one node? With two nodes? With three nodes? … With \(n \) nodes for any positive integer \(n \)?

- When we want to find the minimum node, we just search all roots. How many roots could there be? What is the complexity?
- Consider Binary Addition

\[
\begin{array}{c}
1 & 0 & 1 & 1 & 0 & 1 & 0 \\
+ & 0 & 0 & 1 & 1 & 1 & 0 & 0 \\
\hline
1 & 1 & 1 & 0 & 1 & 1 & 0
\end{array}
\]

- Example: Merge two trees of the same size
Merging Binomial Forest

Queue 1

Queue 2

Merge same size trees starting at smallest

Queue 1

Queue 2

Priority Queues Page 12
Merge same size trees starting at smallest

Queue 1

Queue 2

Merge two B1 trees

Queue 1

Queue 2
There are three B2 trees.
Merge any two.

There are three B3 trees.
Merge any two.
Implementing Binomial Queues

Logical View

Physical View – instead of multiple child pointers, use a leftmost child and nextrightSibling

Link separate trees via sibling pointers
Questions:

- We now know how to merge two binomial queues. How do you perform an **insert**?
- How do you perform a **deleteMin**?
- What is the order of complexity of a **merge**? an **insert**? a **delete**?