Computational problems, algorithms, runtime, hardness
(a brief introduction to theoretical computer science)

slides by Vincent Conitzer

Set Cover (a computational problem)
• We are given:
 – A finite set \(S = \{1, \ldots, n\} \)
 – A collection of subsets of \(S \): \(S_1, S_2, \ldots, S_m \)

• We are asked:
 – Find a subset \(T \) of \(\{1, \ldots, m\} \) such that \(\bigcup_{j \in T} S_j = S \)
 – Minimize \(|T| \)

• Decision variant of the problem:
 – we are additionally given a target size \(k \), and
 – asked whether a \(T \) of size at most \(k \) will suffice

Set Cover (a computational problem)
• One instance of the set cover problem:
 \(S = \{1,2,3,4,5,6\}, \)
 \(S_1 = \{1,2,4\}, \)
 \(S_2 = \{3,4,5\}, \)
 \(S_3 = \{1,3,6\}, \)
 \(S_4 = \{2,3,5\}, \)
 \(S_5 = \{4,5,6\}, \)
 \(S_6 = \{1,3\} \)

Can you see why it is hard?

Using glpsol to solve set cover instances
• How do we model set cover as an integer program?
• See examples

Visualizing Set Cover

Using glpsol to solve set cover instances
• We would see:
 – the runtime of glpsol on set cover instances increases
 rapidly as the instances’ sizes increase
 – if we drop the integrality constraint, can scale to larger
 instances

• Questions:
 – Using glpsol on our integer program formulation is but one
 algorithm – maybe other algorithms are faster?
 – different formulation; different optimization package (e.g., CPLEX); simply going through all the combinations one by one; …
 – What is “fast enough”?
 – Do (mixed) integer programs always take more time to solve
 than linear programs?
 – Do set cover instances fundamentally take a long time to
 solve?
A simpler problem: sorting

- Given a list of numbers, sort them
- **(Really) dumb algorithm:** Randomly perturb the numbers. See if they happen to be ordered. If not, randomly perturb the whole list again, etc.
- **Reasonably smart algorithm:** Find the smallest number. List it first. Continue on to the next number, etc.
- **Smart algorithm (MergeSort):**
 - It is easy to merge two lists of numbers, each of which is already sorted, into a single sorted list
 - So: divide the list into two equal parts, sort each part with some method, then merge the two sorted lists into a single sorted list
 - ... actually, to sort each of the parts, we can again use MergeSort!

Polynomial time

- Let \(|x|\) be the size of problem instance \(x\)
- Let \(a\) be an algorithm for the problem
- Suppose that for any \(x\), \(\text{runtime}(a,x) < cf(|x|)\) for some constant \(c\) and function \(f\)
 Then we say algorithm \(a\)'s runtime is \(O(f(|x|))\)
- \(a\) is a polynomial-time algorithm if it is \(O(f(|x|))\) for some polynomial function \(f\)
- \(P\) is the class of all problems that have at least one polynomial-time algorithm
- Many people consider an algorithm efficient if and only if it is polynomial-time

Two algorithms for a problem

<table>
<thead>
<tr>
<th>Runtime</th>
<th>(2^n)</th>
<th>(2n^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Run of algorithm 1</td>
<td>\xmark</td>
<td>\xmark</td>
</tr>
<tr>
<td>Run of algorithm 2</td>
<td>\xmark</td>
<td>\xmark</td>
</tr>
</tbody>
</table>

Algorithm 1 is \(O(n^n)\) (a polynomial-time algorithm)
Algorithm 2 is not \(O(n^k)\) for any constant \(k\) (not a polynomial-time algorithm)
The problem is in \(P\)

Linear programming and (mixed) integer programming

- LP and (M)IP are also computational problems
- LP is in \(P\)
 - Ironically, the most commonly used LP algorithms are not polynomial-time as an upper bound (but "usually" polynomial time)
- (M)IP is not known to be in \(P\)
 - Most people consider being in \(P\) unlikely

Reductions

- Sometimes you can reformulate problem A in terms of problem B so that solving B solves A (i.e., reduce A to B)
 - E.g., we have seen how to formulate several problems as linear programs or integer programs
- In this case problem A is at most as hard as problem B (B could be harder)
 - For example, could get a cookie by donating blood, but donating blood is tougher.
 - Since LP is in \(P\), all problems that we can formulate using LP are in \(P\)
 - Caveat: only true if the linear program itself can be created in polynomial time!

NP ("nondeterministic polynomial time")

- Recall: decision problems require a yes or no answer
- NP: the class of all decision problems such that if the answer is yes, there is a simple proof of that
 - E.g., "does there exist a set cover of size \(k\)?"
 - If yes, then just show which subsets to choose!
- Technically:
 - The proof must have polynomial length
 - The correctness of the proof must be verifiable in polynomial time
P vs. NP

- **Open problem:** is it true that P=NP?
- The most important open problem in theoretical computer science (maybe in mathematics?)
- $1,000,000 Clay Mathematics Institute Prize
- Most people believe P is not NP
- If P were equal to NP...
 - Current cryptographic techniques can be broken in polynomial time
 - Computers can probably solve many difficult mathematical problems...
 - ... including the other Clay Mathematics Institute Prizes! ©

NP-hardness

- A problem is NP-hard if the following is true:
 - Suppose that it is in P
 - Then P=NP
- So, trying to find a polynomial-time algorithm for it is like trying to prove P=NP
- Set cover is NP-hard
- Typical way to prove problem Q is NP-hard:
 - Take a known NP-hard problem Q'
 - Reduce it to your problem Q
 - (in polynomial time)
 - E.g., (M)IP is NP-hard, because we have already reduced set cover to it
 - (M)IP is more general than set cover, so it can't be easier
- A problem is NP-complete if it is 1) in NP, and 2) NP-hard

Reductions:

To show problem Q is easy:

\[Q \xrightarrow{\text{reduce}} \text{Problem known to be easy (e.g., LP)} \]

To show problem Q is (NP-)hard:

\[\text{Problem known to be (NP-)hard} \xrightarrow{\text{reduce}} Q \]

ABSOLUTELY NOT A PROOF OF NP-HARDNESS:

\[Q \xrightarrow{\text{reduce}} \text{MIP} \]

Reducing independent set to set cover

- In set cover instance (decision variant),
 - let \(S = \{1,2,3,4,5,6,7,8,9\} \) (set of edges),
 - for each vertex let there be a subset with the vertex's adjacent edges: \(\{1,4\}, \{1,2,6\}, \{2,3\}, \{4,6,7\}, \{3,8,8,9\}, \{9\}, \{5,7,8\} \)
 - target size = \#vertices - k = 7 - 4 = 3
- Claim: answer to both instances is the same (why??)
- So which of the two problems is harder?

Independent Set

- In the below graph, does there exist a subset of vertices, of size 4, such that there is no edge between members of the subset?

- General problem (decision variant): given a graph and a number k, are there k vertices with no edges between them?
- NP-complete

Weighted bipartite matching

- Match each node on the left with one node on the right (can only use each node once)
- Minimize total cost (weights on the chosen edges)
Weighted bipartite matching...

- minimize $c_{ij} x_{ij}$ where c_{ij} is edge cost and $x_{ij} = 1$ if edge from i to j is chosen
- subject to
 - for every i, $\sum_j x_{ij} = 1$
 - for every j, $\sum_i x_{ij} = 1$
 - for every i, j, $x_{ij} \geq 0$

- Theorem [Birkhoff-von Neumann]: this linear program always has an optimal solution consisting of just integers
 - and typical LP solving algorithms will return such a solution

- So weighted bipartite matching is in P