Social Media Threats and Countermeasures

Kyumin Lee James Caverlee Calton Pu
Utah State Univ. Texas A&M Univ. Georgia Tech

June 1, 2014 @ ICWSM 2014
Schedule

09:00 ~ 09:10 Introduction to Social Media Threats (Social Spam, Campaigns, Misinformation and Crowdturfing)

09:10 ~ 09:55 Social Spam

09:55 ~ 10:25 Campaigns

10:25 ~ 10:35 10 min Break

10:35 ~ 11:15 Misinformation

11:15 ~ 11:45 Crowdturfing

11:45 ~ 12:00 Challenges, Tools and Conclusion
Disclaimers

• Since the tutorial is only 3 hours long, we will focus on presenting social media threats and countermeasures of recent research results.

• But, we don’t have time to give great depth on every possible result, so we will highlight a few representatives.

• We will provide many relevant references in the end of the tutorial.
<table>
<thead>
<tr>
<th>Time</th>
<th>Session Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>09:00 ~ 09:10</td>
<td>Introduction to Social Media Threats (Social Spam, Campaigns, Misinformation and Crowdturfing)</td>
</tr>
<tr>
<td>09:10 ~ 09:55</td>
<td>Social Spam</td>
</tr>
<tr>
<td>09:55 ~ 10:25</td>
<td>Campaigns</td>
</tr>
<tr>
<td>10:25 ~ 10:35</td>
<td>10 min Break</td>
</tr>
<tr>
<td>10:35 ~ 11:15</td>
<td>Misinformation</td>
</tr>
<tr>
<td>11:15 ~ 11:45</td>
<td>Crowdturfing</td>
</tr>
<tr>
<td>11:45 ~ 12:00</td>
<td>Challenges, Tools and Conclusion</td>
</tr>
</tbody>
</table>
Large-Scale Social Systems

Online Social Networking
- Facebook
- Twitter
- LinkedIn

Social Media
- YouTube
- Flickr
- Digg

Information sharing communities
- Reddit
- Yahoo! Answers
- StumbleUpon

Social Games
- Zynga
- Rovio
- EA
- Wooga

Location-based Services
- Foursquare
- Yelp
- Google Latitude
- Gowalla

Crowd-based services
- CrowdFlower
- Kickstarter
- Indiegogo
Large-Scale Social Systems: Key Organizing Principles

- **Openness:**
 - Social systems are inherently open to users who generate, share and consume information
 - E.g., post a message, upload and watch a video

- **Collaboration:**
 - Many users organically participate in social systems to engage in collaborative activities
 - E.g., organize for political change, share disaster-related information

- **Real-time information propagation:**
 - Users, media and organization post information related to hot events in (near) real-time
 - E.g., emergency alerts, natural disaster news and sports games

- **Crowdsourcing tasks or hiring cheap workers from all over the world:**
 - People can hire workers from crowdsourcing sites with paying little money
 - E.g., workers from Amazon Mechanical Turk for labeling data, workers from Fiverr for editing a document
Large-Scale Social Systems: Challenges and Research Approach

• These necessary positive aspects may also lead to negative consequences
 – Spam of many flavors
 • Comment spam (~90% on websites = 46 billion)
 • Spam tweets (1% = 3 million/day) and Twitter spammers (5% = 25 million)
 • Spam videos (20%)
 – Traditional Attacks
 • Phishing, malware and etc
 – Campaigns
 – Misinformation
 – Crowdturfing
 – Misuse
 • Crowdsourcing the wrong guy in the Boston bombings at Reddit
 – …
Fake Accounts

- 9% on Facebook = 87 million accounts in 2012 [Facebook]
Comment Spam

- **83 ~ 90% on websites = 46 billion comments** [Akismet and Mollom. 2010, Kant et al. WSDM 2012]

<table>
<thead>
<tr>
<th>Rosiane</th>
<th>Submitted on 2012/07/02 at 09:27</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rosiane</td>
<td>you people may not belive at all but i can and will tell you that between heaven and earth are things beyond the reach of ordinary man and women,you people do not know what knowledge is and you would not gain any knowledge if its not by some devine revelation.Is this the book of the devil maybe but it sure as hell is not for ordinary folks like you people to read, you could not handle it any one of you, before you open the book of the devil you better make sure your in a right pad with GOD Jehova.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Urvi</th>
<th>Submitted on 2012/07/02 at 02:20</th>
</tr>
</thead>
<tbody>
<tr>
<td>Urvi</td>
<td>I had a spambot at my potrey site post something regarding the size of her husband.All I can say is Mr. Jeremy must be glad he isn't married to her.Then there's the one with the guy wanting to sell his bridal dresses.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>best affiliate website</th>
<th>Submitted on 2012/06/29 at 04:34</th>
</tr>
</thead>
<tbody>
<tr>
<td>best affiliate website</td>
<td>Make $1,000's Weekly with a Health Internet Business of Your Very Own</td>
</tr>
<tr>
<td>best affiliate website</td>
<td>Now get a complete fully-operational “Health eBiz” in a box!</td>
</tr>
<tr>
<td>best affiliate website</td>
<td>This amazing site:</td>
</tr>
<tr>
<td>best affiliate website</td>
<td>* Closes sales automatically for you!</td>
</tr>
<tr>
<td>best affiliate website</td>
<td>* Has a complete electronic sales manager that makes all upsells for you!</td>
</tr>
</tbody>
</table>
Spam Tweets and Twitter Spammers

- 1% Spam tweets and 5% Twitter spammers
 - 3 million spam tweets/day and 25 million spam accounts
 [Twitter and TwitSweeper, 2010]
Spam Videos

• 183 million U.S. Internet users watched more than 37 billion online videos in Oct 2012. [comScore]
• 20% of online videos are spam [VideoSurf]
Collective Attention Spam

- Target popular and trendy topics/items
- Feed spam contents once the topics/items become popular

Results for #DrakeCriesWhen
Campaigns

Astroturfing

The need to protect the internet from 'astroturfing' grows ever more urgent.

The tobacco industry does it, the US Air Force clearly wants to ... astroturfing – the use of sophisticated software to drown out real people on web forums – is on the rise. How do we stop it?

Fake review campaign

1 of 8 people found the following review helpful:

⭐⭐⭐⭐⭐ Practically FREE music, December 4, 2004
This review is from Audio Extract (CD-ROM)
I can't believe for $10 (after rebate) I got a program that gets me free unlimited music. I was hoping it did half what was ... 2 of 2 people found the following review helpful:

⭐⭐⭐⭐⭐ Like a tape recorder..., December 8, 2004
This review is from Audio Extract (CD-ROM)
This software really rocks. I can set the program to record music all day long and just let it go. I come home and my ... 3 of 8 people found the following review helpful:

⭐⭐⭐⭐⭐ Yes – it really works, December 4, 2004
This review is from Audio Extract Pro (CD-ROM)
See my review for Audio Xtract - this PRO is even better. This is the solution I've been looking for. After buying iTunes, ... 3 of 10 people found the following review helpful:

⭐⭐⭐⭐⭐ This is even better..., December 8, 2004
This review is from Audio Extract Pro (CD-ROM)
Let me tell you, this has to be one of the coolest products ever on the market. Record 8 internet radio stations at once, ... 5 of 5 people found the following review helpful:

⭐⭐⭐⭐⭐ My kids love it, December 4, 2004
This review is from Fund Aquarium 3D Deluxe Edition
This was a bargain at $20 - better than the other ones that have no above water scenes. My kids get a kick out of the ... 5 of 5 people found the following review helpful:

⭐⭐⭐⭐⭐ For the price you..., December 8, 2004
This review is from Fund Aquarium 3D Deluxe Edition
This is one of the coolest screensavers I have ever seen, the fish move realistically, the environments look real, and the ... 2 of 9 people found the following review helpful:

⭐⭐⭐⭐⭐ Best music just got..., December 4, 2004
This review is from Audio Extract Pro (CD-ROM)
I looked forever for a way to record internet music. My way took a long time and many steps (frustrating). Then I found Audio Xtract. With more than 3,000 songs downloaded in ... 3 of 3 people found the following review helpful:

⭐⭐⭐⭐⭐ Cool, looks great..., December 4, 2004
This review is from Fund Aquarium 3D Deluxe Edition
We have this set up on the PC at home and it looks GREAT. The fish and the scenes are really neat. Friends and family ... 3 of 3 people found the following review helpful:

⭐⭐⭐⭐⭐ WOW, internet music! ..., December 4, 2004
This review is from Audio Extract Pro (CD-ROM)
I looked forever for a way to record internet music. My way took a long time and many steps (frustrating). Then I found Audio Xtract. With more than 3,000 songs downloaded in ... 3 of 3 people found the following review helpful:

⭐⭐⭐⭐⭐ Best music just got..., December 4, 2004
This review is from Audio Extract Pro (CD-ROM)
I looked forever for a way to record internet music. My way took a long time and many steps (frustrating). Then I found Audio Xtract. With more than 3,000 songs downloaded in ...

Political campaign

Bogus Grass-Roots Politics on Twitter

Data-mining techniques reveal fake Twitter accounts that give the impression of a vast political movement.

TUESDAY, NOVEMBER 2, 2010 | BY KURT KLEINER

Researchers have found evidence that political campaigns and special-interest groups are using scores of fake Twitter accounts to create the impression of broad grass-roots political expression. A team at Indiana University used data-mining and network-analysis techniques to detect the activity.

"We think this technique must be common," says Filippo Menczer, an associate professor at Indiana University and one of the principal investigators on the project. "Wherever there are lots of eyes looking at screens, spammers will be there; so why not with politics?"
Adversarial Propaganda

- Create and spread rumors and Misinformation
- Target a product/ government

Pentagon Wants a Social Media Propaganda Machine
BY ADAM RAWNSLEY 07.15.11 2:40 PM
Follow @arawnsley

You don't need to have 5,000 friends of Facebook to know that social media can have a notorious mix of rumor, gossip and just plain disinformation. The Pentagon is looking to build a tool to sniff out social media propaganda campaigns and spit some counter-spin right back at it.

On Thursday, Defense Department extreme technology arm Darpa unveiled its Social Media in Strategic Communication (SMiCC) program. It's an attempt to get better at both detecting and...
Misinformation (Fake)

Fake Images
Crowdturfing (Crowdsourcing + Astroturfing)

- A Multimillion-dollar industry in Chinese crowdsourcing sites
 - 90% crowdturfing tasks [MIT Technology Review]
- 70~95% crowdturfing tasks at several U.S. crowdsourcing sites [Wang et al., WWW 2012]

Twitter Post: CPP Scam

Work done: 222/250
You will earn $0.60
This task takes less than 30 min to finish
Job ID: 364488d297e8

What is expected from Workers?

You must have 50 Twitter followers. Make sure you are logged into your Twitter account

1. Open your browser and search on Google "college pro painters success"
2. Click on any search result that starts with collegepropaintersscam.com
3. Go to Home Page of the website
4. Retweet any article
Examples of Crowdturfing

- Vietnamese propaganda spread by 1,000 crowdturfers

Vietnam admits deploying bloggers to support government

By Nga Pham
BBC News, Hanoi

Vietnamese propaganda officials have admitted deploying people to engage in online discussions and post comments supporting the Communist Party’s policies.

The party has also confirmed that it operates a network of nearly 1,000 “public opinion shapers”.

They are assigned with the task of spreading the party line.

The tactic is similar to China’s model of internet moderators who aim to control news and manipulate opinion.

'Political opportunists'

Hanoi Propaganda and Education Department head Ho Quang Loi said that the authorities had hired hundreds of so-called “internet polemists” in the fight against “online hostile forces”.

The bloggers have been hailed for stopping negative online rumours.
Examples of Crowdturfing

“Dairy giant Mengniu in smear scandal”

- Biggest dairy company in China (Mengniu)
 - Defame its competitors
 - Hire Internet users to spread false stories

- Impact
 - Victim company (Shengyuan)
 - Stock fell by 35.44%
 - Revenue loss: $300 million
 - National panic

Warning: Company Y’s baby formula contains dangerous hormones!
Conceptual Level of Tutorial Theme

[1] Social Spam (Individual Spammer/Content Polluter)

[2] Campaigns (Groups of users)

1. Get Info
2. Feed Misinformation
3. Attention
Schedule

09:00 ~ 09:10 Introduction to Social Media Threats
(Social Spam, Campaigns, Misinformation and Crowdturfing)

09:10 ~ 09:55 Social Spam

09:55 ~ 10:25 Campaigns

10:25 ~ 10:35 10 min Break

10:35 ~ 11:15 Misinformation

11:15 ~ 11:45 Crowdturfing

11:45 ~ 12:00 Challenges, Tools and Conclusion
Social Spam
(Individual Spammer/Content Polluter)

[1]

Campaigns
(Groups of users)

[2]

Misinformation

[3]

Origin: Crowdturfing

[4]
Social Spam

- **Fake accounts** (5 ~ 6% on Facebook = 42 million)
 - [Facebook. 2012]
- **Comment spam** (83 ~ 90% on websites = 46 billion)
 - [Akismet and Mollom. 2010, Kant et al. WSDM 2012]
- **Spam Tweets** (1% = 3 million/day) and **Twitter Spammers** (5% = 25 million)
 - [Twitter. 2010, TwitSweeper. 2010, Lee et al. SIGIR 2010, Lee et. al ICWSM 2011, Yang et al. WWW 2012]
- **Tag spam**
- **Spam videos**
 - [Benevenuto et al. AIRWeb 2008, Benevenuto et al. SIGIR 2009]
- **Fake Reviews**
 - [Jindal and Bing ICDM 2007, Lim et al. CIKM 2010, Wang et al. TIST 2011, Mukherjee et al. WWW 2012]
- **Voting spam**
 - [Bian et al. AIRWEB 2008, Tran et al. NSDI 2009]
- **Wikipedia vandalism**
- …
Blacklisting URLs

- Crawled URLs from Twitter
 - 25 million URLs crawled
 - 8% of them link to spam pages

- Over 80% of spam URLs were shortened
 - Mask landing site
 - Defeat blacklist filtering
 - bit.ly -> short.to -> malware landing page

Grier, C., Thomas, K., Paxson, V., and Zhang, M. @spam: the underground on 140 characters or less. In CCS, 2010.
Blacklist Performance

• Blacklists are slow to list spam domains
 – 80% of clicks are seen in first day of a spam URL appearing on Twitter

• Retroactively blacklist

![URIBL](image1.png) ![Google malware](image2.png)

Red = Lag
Blue = Lead
Comparison to Email Clickthrough

- Spam Email clickthrough: .003-.006%
 - From Spamalytics, Kanich et al. CCS 2008

- Twitter clickthrough: .13%
 - Collected 245,000 spam URLs
 - Define clickthrough as clicks / reach
 - Reach defined as tweets * followers
Social Spam Detection Approaches

• Supervised spam detection approach
 – The most popular approach
 – Require labeled data for training purpose

• Ranking users based on their social graph

• Use crowd wisdom (humans) to identify fake accounts
Supervised spam detection approach
Conditional Redirection

- Attackers distribute initial URLs of conditional redirect chains via tweets.
 - Initial URLs are shortened.
- Conditional redirect server will lead
 - normal browsers to malicious landing pages
 - crawlers to benign landing pages

Misclassifications can occur.

July 11, 2011

- 6,585 different accounts and shortened URLs
 - about 3% of all the daily tweets sampled
- Condition redirection
 - google.com for crawlers
 - random spam pages for normal browsers
- Some servers reused
Basic Idea

- Attackers need to **reuse** redirection servers.
 - no infinite redirection servers
- They analyze a group of correlated URL chains.
 - to detect redirection servers reused
 - to figure out features of the correlated URL chains
System Overview

- **Data collection**
 - collect tweets with URLs from Twitter public timeline
 - visit each URL to obtain URL chains and IP addresses

- **Feature extraction**
 - group domains with the same IP addresses from 10,000 tweets containing URLs
 - find entry point URLs
 - generate feature vectors for each entry point
System Overview

- **Training**
 - label feature vectors using account status info.
 - suspended \Rightarrow malicious, active \Rightarrow benign
 - build classification models
- **Classification**
 - classify suspicious URLs
Features

• Suspiciousness of correlated URL chains
 – length of URL redirect chain
 – frequency of entry point URL
 – # of different initial and landing URLs

• Similarity of accounts posting the same URL chains
 – # of Twitter applications and accounts
 – account creation dates
 – followers-friends ratios
 – # of followers and friends
Training Classifiers

• Training dataset
 – Tweets between Sept 2011 and Oct 2011
 – 156,896 benign and 26,950 malicious entry point URLs

• Classification algorithm
 – support vector classification
 – 10-fold cross validation
 – false positive: 1.13%, False negative: 7.01%
Detection Efficiency

• They measure the time difference between
 – when WarningBird detects suspicious accounts
 – when Twitter suspends the accounts

Avg. time difference: 13.5 min

More than 20 hours

Time difference between detection and suspension (min)
Foursquare Spam Tips

- Tips unrelated to Venue

Features used to detect Spammers

• User Attributes
 – Properties of the Foursquare user profile and his checkins

• Social Attributes
 – Friends network of the Foursquare user under inspection

• Content Attributes
 – Details about Tips posted by the Foursquare user
<table>
<thead>
<tr>
<th>Category</th>
<th>χ² rank</th>
<th>Feature</th>
</tr>
</thead>
<tbody>
<tr>
<td>User Attributes</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>Number of Tips</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>Ratio of Check-ins and Tips</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>Number of Check-ins</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>Number of Badges</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>Number of Mayorships</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>Ratio of Check-ins and Badges</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>Number of Photos posted</td>
</tr>
<tr>
<td>Social Attributes</td>
<td>6</td>
<td>Number of Friends</td>
</tr>
<tr>
<td>Content Attributes</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Similarity score of Tips</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>Number of URLs posted</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>Average number of words in Tips</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>Average number of characters in Tips</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>Ratio of number of likes and number of Tips</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>Average number of spam words in Tips</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>Average number of phone-numbers posted in Tips</td>
</tr>
</tbody>
</table>
Classification Results

<table>
<thead>
<tr>
<th>Classification Algorithm</th>
<th>Precision (Spam)</th>
<th>Precision (Safe)</th>
<th>Recall (Spam)</th>
<th>Recall (Safe)</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>KNN</td>
<td>83.2%</td>
<td>86.6%</td>
<td>86.3%</td>
<td>83.5%</td>
<td>84.89%</td>
</tr>
<tr>
<td>Decision Tree</td>
<td>88.1%</td>
<td>89.2%</td>
<td>88.3%</td>
<td>85.8%</td>
<td>89.53%</td>
</tr>
<tr>
<td>Random Forest</td>
<td>89.3%</td>
<td>90.2%</td>
<td>88.3%</td>
<td>90.3%</td>
<td>89.76%</td>
</tr>
</tbody>
</table>
How to Collect Evidence of Spammers
How to Collect Evidence of Spammers

- **Human experts** inspect users → Takes time to find spammers
- **Users report** spammers → 1) how many users participate? 2) False reports
How to Collect Evidence of Spammers

- Create and deploy social honeypots in SNS

Lee, K., Eoff, B., and Caverlee, J. Seven Months with the Devils: A Long-Term Study of Content Polluters on Twitter. In ICWSM, 2011.
Social Honeypot Design

- Deployed 60 social honeypots (account + bot)

- They posted four types tweets with different ratio.
 - a normal textual tweet.
 - an “@” reply to one of the other social honeypots.
 - a tweet containing a link.
 - a tweet containing one of Twitter's current Top 10 trending topics, which are popular n-grams.

- Tempted 36,000 content polluters for seven months.
Study of Harvested Content Polluters

- The number of content polluters tempted per day

![Graph showing number of content polluters tempted per day over time.]

- Content Polluter Examples

<table>
<thead>
<tr>
<th>Content Polluters</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duplicate Spammers</td>
<td>OFFICIAL PRESS RELEASE Limited To 10,000 “Platinum Founders” Reseller Licenses http://tinyurl.com/yd75xyy</td>
</tr>
<tr>
<td>Duplicate @ Spammers</td>
<td>#Follow @ anhran @PinkySparky @RestaurantsATL @combi31 @BBoomsma @TexMexAtl @DanielStoicaTax</td>
</tr>
<tr>
<td>Malicious Promoters</td>
<td>The Secret To Getting Lots Of Followers On Twitter http://bit.ly/6BiLk3</td>
</tr>
<tr>
<td>Friend Infiltrators</td>
<td>Thank you for the follows, from a newbie</td>
</tr>
</tbody>
</table>
Study of Harvested Content Polluters (Cont’d)

- Following and follower graphs of two content polluters and two legitimate users.
Ranking users based on their social graph
Identifying spammers

- Collected 54M Twitter users, 1.9B links, 1.7B Tweets in 2009
- Identified the suspended accounts according to Twitter
 - Account could be suspended for various reasons
- Identified suspended users with at least one blacklisted URL
 - Includes 41,352 spammers

Do spammers engage in link farming?

Spam-targets: Users followed by spammers

27% (15/54) of entire Twitter targeted!
Do spammers engage in link farming?

Spam-followers: Users following spammers

- **spam-targets**: 15M
- **spam-followers**: 1.38M

27% (15/54) of entire Twitter targeted!
Do spammers engage in link farming?

Spammers farm links at large-scale.

Follower count for spammers is much higher than random users. Avg follower count for:
Spammers: 234,
Random users: 36

82% of spam-followers are also targeted users.
Are link farmers real users or spammers?

- To find out if they are spammers or real users, the researchers
 - 1. Used Twitter service to get list of suspended and verified users
 - 76% users not suspended, 235 of them verified by Twitter
 - 2. Manually verified 100 random users
 - 86% users are real with legitimate links in their Tweets
 - 3. Analyzed their profiles
 - They are much more active in updating their profiles than random users

- **Link farmers are real active users**
Who are the link farmers?

- Link farmers are mostly interested in promoting their business or tweeting about trends in a particular domain.
Who are the link farmers?

- Top 5 link farmers according to Pagerank:
 - 1. Barack Obama: Obama 2012 campaign staff
 - 2. Britney Spears
 - 3. NPR Politics: Political coverage and conversation
 - 4. UK Prime Minister: PM’s office
 - 5: JetBlue Airways

Link farmers include popular users and organizations

Collusionrank

Algorithm:
• 1. Negatively bias the initial scores to the set of spammers
• 2. In Pagerank style, iteratively penalize users
 – who follow spammers or those who follow spam-followers

Collusionrank is based on the score of followings of a user
 – Because user is penalized based on who he follows
Effect of Collusionrank on spammers

40% of spammers appear in top 20% according to Pagerank

Most of the spammers get pushed to last 10% positions based on Collusionrank
Effect on link farmers

87% of link farmers in top 2% users according to Pagerank

98% of the link farmers get pushed to last 10% positions based on Collusionrank
Using crowd wisdom (humans) to identify fake accounts (sybils)
User Study Setup

• User study with 2 groups of testers on 3 datasets
• 2 groups of users
 – Experts – The researchers’ friends (CS professors and graduate students)
 – Turkers – Crowdworkers from online crowdsourcing systems
• 3 ground-truth datasets of full user profiles
 – Renren – given to them by Renren Inc.
 – Facebook US and India – crawled
 • *Sybils* (fake) profiles – banned profiles by Facebook
 • *Legitimate* profiles – 2-hops from the researchers’ profiles

Experiment Overview

<table>
<thead>
<tr>
<th>Dataset</th>
<th># of Profiles</th>
<th>Test Group</th>
<th># of Testers</th>
<th>Profile per Tester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Renren</td>
<td></td>
<td>Sybil: 100, Legit.: 100</td>
<td>Chinese Expert: 24</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Chinese Turker: 418</td>
<td>10</td>
</tr>
<tr>
<td>Facebook US</td>
<td>32, 50</td>
<td>US Expert: 40</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>US Turker: 299</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Facebook India</td>
<td>50, 49</td>
<td>India Expert: 20</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>India Turker: 342</td>
<td>12</td>
<td></td>
</tr>
</tbody>
</table>
Individual Tester Accuracy

- Experts prove that humans can be accurate
- Turkers need extra help…

>80% accuracy!
Wisdom of the Crowd

• Is wisdom of the crowd enough?

• Majority voting
 – Treat each classification by each tester as a vote
 – Majority vote determines final decision of the crowd

• Results after majority voting (20 votes)
 • False positive rates are excellent
 • What can be done to improve turker accuracy?
Eliminating Inaccurate Turkers

Majority Vote

False Negative (%)

Turker Accuracy Threshold (%)

China
India
US

Dramatic Improvement

Removing inaccurate turkers can effectively reduce false negatives!
System Architecture

Crowdsourcing Layer

- OSN Employees
 - Very Accurate Turkers
 - Accurate Turkers
- All Turkers
 - Rejected!
- Social Network
 - User Reports
 - Suspicious Profiles

Flag Suspicious Users

- Continuous Quality Control
- Locate Malicious Workers
So far… Social Spam Detection Approaches

• Supervised spam detection approach
 – The most popular approach
 – Require labeled data for training purpose

• Ranking users based on their social graph

• Use crowd wisdom (humans) to identify fake accounts
Grier, C., Thomas, K., Paxson, V., and Zhang, M. @spam: the underground on 140 characters or less. In CCS, 2010.

Lee, K., Eoff, B., and Caverlee, J. Seven Months with the Devils: A Long-Term Study of Content Polluters on Twitter. In ICWSM, 2011.

Schedule

09:00 ~ 09:10 Introduction to Social Media Threats (Social Spam, Campaigns, Misinformation and Crowdturfing)
09:10 ~ 09:55 Social Spam
09:55 ~ 10:25 Campaigns
10:25 ~ 10:35 10 min Break
10:35 ~ 11:15 Misinformation
11:15 ~ 11:45 Crowdturfing
11:45 ~ 12:00 Challenges, Tools and Conclusion
Conceptual Level of Tutorial Theme

[1] Social Spam (Individual Spammer/Content Polluter)

[2] Campaigns (Groups of users)

1. Get Info
2. Feed Misinformation
3. Attention

Origin: Crowdturfing

Popular keywords or topics
Campaign Detection Approaches

- Graph-based spam campaign detection
- Content-driven campaign detection
Graph-based spam campaign detection
System Overview

- Identify coordinated spam campaigns in Facebook.
 - Templates are used for spam generation.

Build Post Similarity Graph

– A node: an individual wall post
– An edge: connect two “similar” wall posts

Go to evil.com!
Check out funny.com
Wall Post Similarity Metric

Spam wall post model:

A textual description:

A destination URL:

hey see your love compatibility ! go here yourlovecalc . com
(rewrite spaces as underscores)
Wall Post Similarity Metric

• Condition 1:
 – Similar textual description.

Guess who your secret admirer is??
Go here nevasubevd.blogs.pot.com (take out spaces)

Guess who your secret admirer is??”
Visit: yes-crush.com (remove spaces)

Establish an edge!
Wall Post Similarity Metric

• Condition 2:
 – Same destination URL.

secret admirer revealed.
go to yourlovecalc . com (remove the spaces)

hey see your love compatibility !
go here yourlovecalc . com (remove spaces)

Establish an edge!
Extract Wall Post Campaigns

- Intuition:

- Reduce the problem of identifying potential campaigns to identifying connected subgraphs.
Locate Spam Campaigns

- Distributed: campaigns have many senders.
- Bursty: campaigns send fast.

Wall post campaign

Distributed?

YES

Malicious

NO

Benign

Bursty?

YES

Malicious

NO

Benign
Validation

• The detection approach found ~200K malicious wall posts (~10%) from ~2M wall posts with URLs.

• Validation focused on detected URLs.

• Adopted multiple validation steps:
 ▪ URL de-obfuscation
 ▪ 3rd party tools
 ▪ Redirection analysis
 ▪ Keyword matching
 ▪ URL grouping
 ▪ Manual confirmation
Validation

• Step 1: Obfuscated URL
 – URLs embedded with obfuscation are malicious.
 – Reverse engineer URL obfuscation methods:
 • Replace ‘.’ with “dot” : 1lovecrush dot com
 • Insert white spaces : abbykywyty . blogs pot . co m
Validation

- Step 2: Third-party tools
 - Use multiple tools, including:
 - McAfee SiteAdvisor
 - Google’s Safe Browsing API
 - Spamhaus
 - Wepawet (a drive-by-download analysis tool)
 - ...
Validation

• Step 3: Redirection analysis
 – Commonly used by the attackers to hide the malicious URLs.
Experimental Evaluation

The validation result.

- Obfuscated URL: 6.3%
- Blacklisted URL: 28.0%
- Redirection Analysis: 27.9%
- Keyword matching: 1.2%
- URL grouping: 32.5%
- Manual confirmation: 0.1%

- True Positives (ALL): 96.1%
- False Positives: 3.9%
Spam Campaign Goal Analysis

- Categorize the attacks by attackers’ goals.

- Phishing #1: for money
- Phishing #2: for info
Content-driven campaign detection

Support Breast Cancer Awareness, add a #twibbon to your avatar now! - http://bit.ly/3mAWR1

I'm having fun with @formspring. Create an account and follow me at http://formspring.me/xnadjeaaa

@Wookiefoot Real Money Doubling Forex Robot Fap Turbo 129$ http://bit.ly/ch9r1Hn?=mjkx

@justinbeiber Support Breast Cancer Awareness, add a #twibbon to your avatar now! - http://bit.ly/4DQ6vq

RT @justinbeiber Support … #twibbon to your avatar now! - http://bit.ly/4DQ6vq

Two Key Components

- **Message Graph Construction**
 - Node: a message, Edge: if a pair of messages (nodes) are similar, add an edge
 - Measure message similarity by near-duplicate detection algorithm
 - Use MapReduce framework to improve efficiency

- **Campaign (subgraph) Extraction**
 - Find subgraphs each of which is dense like maximal clique
 - Use effective and efficient algorithm for campaign extraction

- **Twitter Datasets (Short Text)**
 - Small dataset – 1,912 messages
 - Large dataset – 1.5 million messages
Message Graph Construction

- Identifying correlated messages for Message Graph Construction
 - Unigram
 - Shingling
 - I-Match
 - SpotSigs

Message = “i think lady gaga is unique person”

4-Shingling: {“i think lady gaga”, “think lady gaga is”, “lady gaga is unique”, “gaga is unique person”}

\[
Jaccard(A, B) = \frac{|A \cap B|}{|A \cup B|}
\]
Identifying Correlated Messages

- 1,912 messages (know ground truth)
 - 298 pairs of similar messages

Experimental results for Identifying correlated messages

<table>
<thead>
<tr>
<th>Approach</th>
<th>F_1</th>
<th>Precision</th>
<th>Recall</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unigram ($\tau = 0.8$)</td>
<td>0.63</td>
<td>0.97</td>
<td>0.46</td>
</tr>
<tr>
<td>4-Shingling ($\tau = 0.3$)</td>
<td>0.81</td>
<td>0.89</td>
<td>0.73</td>
</tr>
<tr>
<td>I-Match (IDF=[0.0, 0.8])</td>
<td>0.50</td>
<td>0.53</td>
<td>0.47</td>
</tr>
<tr>
<td>SpotSigs (#A=500, $\tau = 0.4$)</td>
<td>0.70</td>
<td>0.77</td>
<td>0.64</td>
</tr>
</tbody>
</table>
Campaign (subgraph) Extraction

- K-means clustering algorithm
- Loose campaign extraction (maximally connected components)
- Strict campaign extraction (maximal cliques)
- Cohesive campaign extraction (approximate approach to extract densely connected components)
Cohesive Campaign Extraction

- Maximum co-clique size $CC(x,y)$:
 - The biggest clique in the graph such that both vertices are members of the clique
 - $CC(A,B) = 3$

- Maximum clique size $C(x)$:
 - The biggest clique it can participate
 - $C(A) = 4$

Cohesive Campaign Extraction

Vertices

Clique Size

heap

unvisited
neighbors
visiting
visited
Cohesive Campaign Extraction

Start from A, explore A’s neighbor B. Calculate $C(a) = 2$ and output it.
Cohesive Campaign Extraction

- **Vertices**
 - A
 - B
 - C
 - D
 - E
 - F
 - G
 - H

- **Markers**
 - Unvisited
 - Neighbors
 - Visiting
 - Visited

- **Heap**
 - B

- **Clique Size**
 - A
 - Vertices

- **Graph**
 - Connections between vertices A, B, C, D, E, F, G, H

- **Algorithm**
 - Processing vertices in a cohesive manner
 - Tracking visited and unvisited states

- **Graph Theory**
 - Analysis of cliques in a network

Mark A visited. From B, explore B’s immediate neighbors CFH. Calculate $CC(A,B) = 2$ and output it.
Clique Size

Cohesive Campaign Extraction

Mark A visited. From B, explore B’s immediate neighbors CFH. Calculate $CC(A,B) = 2$ and output it.
Cohesive Campaign Extraction

Clique Size

Vertices

heap

C
F
H

unvisited
neighbors
visiting
visited
Cohesive Campaign Extraction

Mark B visited. Choose C as next visiting vertex. From C, explore C’s immediate neighbors DFGH. Calculate $CC(B,C) = 4$ and output it.
Mark B visited. Choose C as next visiting vertex. From C, explore C’s immediate neighbors DFGH. Calculate $CC(B,C) = 4$ and output it.
Cohesive Campaign Extraction

Visit every vertex accordingly.

The curve represents a cohesive campaign.
Campaign (subgraph) Extraction

- 1,912 messages (know ground truth)
 - 298 pairs of similar messages
 - 11 true campaigns

Effectiveness Comparison of Campaign Detection Approaches

<table>
<thead>
<tr>
<th>Approach</th>
<th>NumC</th>
<th>F(_1)</th>
<th>Precision</th>
<th>Recall</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loose</td>
<td>12</td>
<td>0.962</td>
<td>0.986</td>
<td>0.940</td>
</tr>
<tr>
<td>Strict</td>
<td>12</td>
<td>0.906</td>
<td>0.907</td>
<td>0.904</td>
</tr>
<tr>
<td>Cohesive</td>
<td>11</td>
<td>0.963</td>
<td>0.977</td>
<td>0.950</td>
</tr>
<tr>
<td>k-means</td>
<td>5</td>
<td>0.89</td>
<td>1</td>
<td>0.805</td>
</tr>
</tbody>
</table>
So Far…

• Looked at a smallish dataset (with ground truth).

• 4-shingling and cohesive campaign extraction are the best approaches for message graph construction and campaign extractions.

• Next, apply these approaches to “the wild”.
Campaigns in the Wild

- 1.5 million messages → 7,033 campaigns (>= 4 messages)
- Five campaign categories -- 200 campaigns (>= 32 messages)
 - Spam, promotion, template, celebrity and babble campaigns
Examples of Campaigns

Spam Campaigns

<table>
<thead>
<tr>
<th>Monthly Iron Man 2 (Three-Disc Blu-ray...</th>
<th>http://bit.ly/9L0aZU</th>
</tr>
</thead>
<tbody>
<tr>
<td>FollowWednesday Iron Man 2 (Three-Disc Blu-ray...</td>
<td>http://bit.ly/9haKNB</td>
</tr>
</tbody>
</table>

Promotion Campaign

<table>
<thead>
<tr>
<th>#FightPediatricCancer! RT and Dreyer's Fruit Bars will donate $1 ...</th>
<th>http://bit.ly/aZudoJ</th>
</tr>
</thead>
<tbody>
<tr>
<td>RT @SupportSPN: #FightPediatricCancer! RT and Dreyer's Fruit Bars will donate $1 ...</td>
<td>http://bit.ly/aZudoJ</td>
</tr>
<tr>
<td>#FightPediatricCancer! RT and Dreyer's Fruit Bars will donate $1 ... via @zaibatsu</td>
<td>http://bit.ly/aZudoJ</td>
</tr>
</tbody>
</table>

Template Campaign

<table>
<thead>
<tr>
<th>I posted a new photo to Facebook</th>
<th>http://fb.me/KDa8EtY8</th>
</tr>
</thead>
<tbody>
<tr>
<td>I posted a new photo to Facebook</td>
<td>http://fb.me/CnFXpQvc</td>
</tr>
<tr>
<td>I posted a new photo to Facebook</td>
<td>http://fb.me/uwxJSShsV</td>
</tr>
</tbody>
</table>

Celebrity Campaign

<table>
<thead>
<tr>
<th>@justinbieber please Follow me please</th>
</tr>
</thead>
<tbody>
<tr>
<td>@justinbieber Please follow me I love you really!</td>
</tr>
<tr>
<td>@justinbieber please follow me :] i love you ♥</td>
</tr>
</tbody>
</table>

Babble Campaign

<table>
<thead>
<tr>
<th>I'm so tired!</th>
</tr>
</thead>
<tbody>
<tr>
<td>I'm so tired today</td>
</tr>
<tr>
<td>I'm so tired omg</td>
</tr>
</tbody>
</table>
Top-10 Largest Campaigns

<table>
<thead>
<tr>
<th>Msgs</th>
<th>Users</th>
<th>Talking Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>560</td>
<td>34</td>
<td>Iron Man 2 spam</td>
</tr>
<tr>
<td>401</td>
<td>390</td>
<td>Facebook photo template</td>
</tr>
<tr>
<td>231</td>
<td>231</td>
<td>Support Breast Cancer Research (short link)</td>
</tr>
<tr>
<td>218</td>
<td>218</td>
<td>Formspring template</td>
</tr>
<tr>
<td>203</td>
<td>197</td>
<td>Chat template (w/ link)</td>
</tr>
<tr>
<td>166</td>
<td>166</td>
<td>Support Breast Cancer Research (full link)</td>
</tr>
<tr>
<td>165</td>
<td>154</td>
<td>Quote “send to anyone u don’t regret meeting”</td>
</tr>
<tr>
<td>153</td>
<td>153</td>
<td>Justin Bieber Retweets</td>
</tr>
<tr>
<td>145</td>
<td>31</td>
<td>Twilight Movie spam</td>
</tr>
<tr>
<td>111</td>
<td>111</td>
<td>Quote “This October has 5 Fridays ...”</td>
</tr>
</tbody>
</table>
User Level Campaign Detection

User ID	User Messages
3 | M1: I'm having fun with @formspring. Create an account M2: follow me at http://formspring.me/xnadjeaaa
User Level Campaign Detection

62 campaigns (>= 4 users) vs 28 campaigns (>= 4 users)

The higher threshold is, the larger the proportion of inorganic campaigns is.
So far… Campaign Detection Approaches

• Graph-based spam campaign detection

• Content-driven campaign detection
Reference List

Schedule

09:00 ~ 09:10 Introduction to Social Media Threats (Social Spam, Campaigns, Misinformation and Crowdturfing)

09:10 ~ 09:55 Social Spam

09:55 ~ 10:25 Campaigns

10:25 ~ 10:35 Break

10:35 ~ 11:15 Misinformation

11:15 ~ 11:45 Crowdturfing

11:45 ~ 12:00 Challenges, Tools and Conclusion
Schedule

09:00 ~ 09:10 Introduction to Social Media Threats (Social Spam, Campaigns, Misinformation and Crowdturfing)
09:10 ~ 09:55 Social Spam
09:55 ~ 10:25 Campaigns
10:25 ~ 10:35 Break
10:35 ~ 11:15 Misinformation
11:15 ~ 11:45 Crowdturfing
11:45 ~ 12:00 Challenges, Tools and Conclusion
Social Spam

[1] Social Spam (Individual Spammer/Content Polluter)

[2] Campaigns (Groups of users)

1. Get Info
2. Feed Misinformation
3. Attention

Popular keywords or topics

Conceptual Level of Tutorial Theme

Popular keywords or topics

Origin: Crowdturfing
Misinformation Detection Approach

• Supervised misinformation detection approach
 – Detecting false news events on Twitter

 – Detecting fake images on Twitter during Hurricane Sandy
Detecting false news events on Twitter
Chileans love Twitter

• Prominent role for communications
 – online and offline

• All public figures tweet

• Well integrated with traditional media
 – E.g., Earthquake in Feb 27, 2010.

Twitter helped, but ...

• Large majority of tweets were very helpful

• Some tweets were not
 – False tsunami warnings
 – False reports of looting
 – ...
Table 4: Classification results for cases studied of confirmed truths and false rumors.

<table>
<thead>
<tr>
<th>Case</th>
<th># of unique tweets</th>
<th>% of re-tweets</th>
<th># of unique “affirms”</th>
<th># of unique “denies”</th>
<th># of unique “questions”</th>
</tr>
</thead>
<tbody>
<tr>
<td>Confirmed truths</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>The international airport of Santiago is closed</td>
<td>301</td>
<td>81</td>
<td>291</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td>The Viña del Mar International Song Festival is canceled</td>
<td>261</td>
<td>57</td>
<td>256</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Fire in the Chemistry Faculty at the University of Concepción</td>
<td>42</td>
<td>49</td>
<td>38</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>Navy acknowledges mistake informing about tsunami warning</td>
<td>135</td>
<td>30</td>
<td>124</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>Small aircraft with six people crashes near Concepción</td>
<td>129</td>
<td>82</td>
<td>125</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>Looting of supermarket in Concepción</td>
<td>160</td>
<td>44</td>
<td>149</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Tsunami in Iloca and Duao towns</td>
<td>153</td>
<td>32</td>
<td>140</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>TOTAL</td>
<td>1181</td>
<td>1123</td>
<td>4</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>AVERAGE</td>
<td>168,71</td>
<td>160,43</td>
<td>0,57</td>
<td>4,29</td>
<td></td>
</tr>
<tr>
<td>False rumors</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Death of artist Ricardo Arjona</td>
<td>50</td>
<td>37</td>
<td>24</td>
<td>12</td>
<td>8</td>
</tr>
<tr>
<td>Tsunami warning in Valparaiso</td>
<td>700</td>
<td>4</td>
<td>45</td>
<td>605</td>
<td>27</td>
</tr>
<tr>
<td>Large water tower broken in Rancagua</td>
<td>126</td>
<td>43</td>
<td>62</td>
<td>38</td>
<td>20</td>
</tr>
<tr>
<td>Cousin of football player Gary Medel is a victim</td>
<td>94</td>
<td>4</td>
<td>44</td>
<td>34</td>
<td>2</td>
</tr>
<tr>
<td>Looting in some districts in Santiago</td>
<td>250</td>
<td>37</td>
<td>218</td>
<td>2</td>
<td>20</td>
</tr>
<tr>
<td>“Huascar” vessel missing in Talcahuano</td>
<td>234</td>
<td>36</td>
<td>54</td>
<td>66</td>
<td>63</td>
</tr>
<tr>
<td>Villarrica volcano has become active</td>
<td>228</td>
<td>21</td>
<td>55</td>
<td>79</td>
<td>76</td>
</tr>
<tr>
<td>TOTAL</td>
<td>1682</td>
<td>502</td>
<td>836</td>
<td>216</td>
<td></td>
</tr>
<tr>
<td>AVERAGE</td>
<td>240,29</td>
<td>71,71</td>
<td>119,43</td>
<td>30,86</td>
<td></td>
</tr>
</tbody>
</table>
Supervised classification

- Goal: detecting false news events (sets of tweets)
- Approach:
 - Events (tweet sets) from TwitterMonitor
 - [Mathioudakis & Koudas 2010]
 - Labels from Amazon's Mechanical Turk
 - Event types: news, chat or unsure
 - Given news events, label each one to either credible or not
 - Built decision trees for each task
Labeling: News or Chat

- 383 events from TwitterMonitor.net [Mathioudakis & Koudas]
- 7 evaluators per event
- >=5 agreement
Spreading a specific news/event

OR

Conversation or comments among friends.
Labeling: Credible or Not

- 747 events automatically classified as news
- 7 evaluators per event
- >=5 agreement
Almost certainly true
Likely to be true
Likely to be false
Almost certainly false
Credible tweets for users tend to ...

- Have a URL
- Don't have exclamation marks
- Express a negative sentiment
- Are re-posted by prolific users
- Are re-posted by well-connected users
Experimental Results

Table 4: Results for the classification of newsworthy topics.

<table>
<thead>
<tr>
<th>Class</th>
<th>TP Rate</th>
<th>FP Rate</th>
<th>Prec.</th>
<th>Recall</th>
<th>F_1</th>
</tr>
</thead>
<tbody>
<tr>
<td>NEWS</td>
<td>0.927</td>
<td>0.039</td>
<td>0.922</td>
<td>0.927</td>
<td>0.924</td>
</tr>
<tr>
<td>CHAT</td>
<td>0.874</td>
<td>0.054</td>
<td>0.892</td>
<td>0.874</td>
<td>0.883</td>
</tr>
<tr>
<td>UNSURE</td>
<td>0.873</td>
<td>0.07</td>
<td>0.86</td>
<td>0.873</td>
<td>0.866</td>
</tr>
<tr>
<td>W. Avg.</td>
<td>0.891</td>
<td>0.054</td>
<td>0.891</td>
<td>0.891</td>
<td>0.891</td>
</tr>
</tbody>
</table>

89% accuracy

Table 7: Results for the credibility classification.

<table>
<thead>
<tr>
<th>Class</th>
<th>TP Rate</th>
<th>FP Rate</th>
<th>Prec.</th>
<th>Recall</th>
<th>F_1</th>
</tr>
</thead>
<tbody>
<tr>
<td>A ("true")</td>
<td>0.825</td>
<td>0.108</td>
<td>0.874</td>
<td>0.825</td>
<td>0.849</td>
</tr>
<tr>
<td>B ("false")</td>
<td>0.892</td>
<td>0.175</td>
<td>0.849</td>
<td>0.892</td>
<td>0.87</td>
</tr>
<tr>
<td>W. Avg.</td>
<td>0.860</td>
<td>0.143</td>
<td>0.861</td>
<td>0.860</td>
<td>0.86</td>
</tr>
</tbody>
</table>

86% accuracy
Detecting fake images on Twitter during Hurricane Sandy
Background: Hurricane Sandy

- Category 3 storm
- Damages worth $75 billion USD
- Coast of NE America [Atlantic ocean]

Motivation

The Guardian

US News Blog

Hurricane Sandy brings storm of fake news and photos to New York
Misinformation over storm spread quickly online, abetted by journalists no longer taught importance of verifying every source.
Motivation

Man faces fallout for spreading false Sandy reports on Twitter

By Doug Gross, CNN
October 31, 2012 -- Updated 2244 GMT (0644 HKT) | Filed under: Social Media

(CNN) -- As Superstorm Sandy slammed into the East Coast on Monday night, one Twitter user in New York City posted a flurry of alarming reports about fallout from the storm -- from plans to shut down all power in Manhattan to floodwaters pouring into the New York Stock Exchange.

Like many social media messages about Sandy, they were scary and confusing, but some of them were reported as facts by news outlets.

And it turns out, many of them were outlandish. They were apparently posted by a Wall Street analyst.
Goal and Methodology

• Goal: Detecting tweets containing fake images

• Methodology

Data Collection and Filtering → Data Characterization → Classification Module

- Feature Generation
- Obtaining Ground Truth

Evaluating Results
Data Description – Total Sandy Dataset

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Tweets</td>
<td>1,782,526</td>
</tr>
<tr>
<td>Total unique users</td>
<td>1,174,266</td>
</tr>
<tr>
<td>Tweets with URLs</td>
<td>622,860</td>
</tr>
</tbody>
</table>
Data Filtering

• Reputable online resource to filter fake and real images
 – Guardian collected and publically distributed a list of fake and true images shared during Hurricane Sandy

<table>
<thead>
<tr>
<th>Tweets with fake images</th>
<th>10,350</th>
</tr>
</thead>
<tbody>
<tr>
<td>Users with fake images</td>
<td>10,215</td>
</tr>
<tr>
<td>Tweets with real images</td>
<td>5,767</td>
</tr>
<tr>
<td>Users with real images</td>
<td>5,678</td>
</tr>
</tbody>
</table>
Characterization – Fake Image Propagation

- 86% of tweets spreading the fake images were retweets
- Top 30 users out of 10,215 users (0.3%) resulted in 90% of the retweets of fake images
Role of Explicit Twitter Network

• Crawled the Twitter network for all users who tweeted the fake image URLs

• Analyzed role of follower network in fake image propagation
 – Just 11% overlap between the retweet and follower graphs of tweets containing fake images
Classification

- 5 fold cross validation
- Randomly selected fake tweets equal to number of real tweets to prevent bias in the classification

<table>
<thead>
<tr>
<th>User Features [F1]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Friends</td>
</tr>
<tr>
<td>Number of Followers</td>
</tr>
<tr>
<td>Follower-Friend Ratio</td>
</tr>
<tr>
<td>Number of times listed</td>
</tr>
<tr>
<td>User has a URL</td>
</tr>
<tr>
<td>User is a verified user</td>
</tr>
<tr>
<td>Age of user account</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tweet Features [F2]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length of Tweet</td>
</tr>
<tr>
<td>Number of Words</td>
</tr>
<tr>
<td>Contains Question Mark?</td>
</tr>
<tr>
<td>Contains Exclamation Mark?</td>
</tr>
<tr>
<td>Number of Question Marks</td>
</tr>
<tr>
<td>Number of Exclamation Marks</td>
</tr>
<tr>
<td>Contains Happy Emoticon</td>
</tr>
<tr>
<td>Contains Sad Emoticon</td>
</tr>
<tr>
<td>Contains First Order Pronoun</td>
</tr>
<tr>
<td>Contains Second Order Pronoun</td>
</tr>
<tr>
<td>Contains Third Order Pronoun</td>
</tr>
<tr>
<td>Number of uppercase characters</td>
</tr>
<tr>
<td>Number of negative sentiment words</td>
</tr>
<tr>
<td>Number of positive sentiment words</td>
</tr>
<tr>
<td>Number of mentions</td>
</tr>
<tr>
<td>Number of hashtags</td>
</tr>
<tr>
<td>Number of URLs</td>
</tr>
<tr>
<td>Retweet count</td>
</tr>
</tbody>
</table>
Classification Results

<table>
<thead>
<tr>
<th></th>
<th>F1 (user)</th>
<th>F2 (tweet)</th>
<th>F1+F2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Naïve Bayes</td>
<td>56.32%</td>
<td>91.97%</td>
<td>91.52%</td>
</tr>
<tr>
<td>Decision Tree</td>
<td>53.24%</td>
<td>97.65%</td>
<td>96.65%</td>
</tr>
</tbody>
</table>

- Best results were obtained from Decision Tree classifier, the researchers got 97% accuracy in predicting fake images from real.

- Tweet based features are very effective in distinguishing fake images tweets from real.
So far… Misinformation Detection Approach

- Supervised misinformation detection approach
 - Detecting false news events on Twitter
 - Detecting fake images on Twitter during Hurricane Sandy
Reference List

Schedule

09:00 ~ 09:10 Introduction to Social Media Threats (Social Spam, Campaigns, Misinformation and Crowdturfing)
09:10 ~ 09:55 Social Spam
09:55 ~ 10:25 Campaigns
10:25 ~ 10:35 Break
10:35 ~ 11:15 Misinformation
11:15 ~ 11:45 Crowdturfing
11:45 ~ 12:00 Challenges, Tools and Conclusion
Conceptual Level of Tutorial Theme

[1] Social Spam (Individual Spammer/Content Polluter)

[2] Campaigns (Groups of users)

1. Get Info
2. Feed Misinformation
3. Attention

Popular keywords or topics
Mechanical Turk is a marketplace for work.
We give businesses and developers access to an on-demand, scalable workforce. Workers select from thousands of tasks and work whenever it’s convenient.

244,150 HITs available. View them now.

Make Money by working on HITs

HITs - Human Intelligence Tasks - are individual tasks that you work on. Find HITs now.

As a Mechanical Turk Worker you:
- Can work from home
- Choose your own work hours
- Get paid for doing good work

Find an interesting task Work Earn money

Get Results from Mechanical Turk Workers

Ask workers to complete HITs - Human Intelligence Tasks - and get results using Mechanical Turk. Register Now

As a Mechanical Turk Requester you:
- Have access to a global, on-demand, 24 x 7 workforce
- Get thousands of HITs completed in minutes
- Pay only when you’re satisfied with the results

Fund your account Load your tasks Get results

or learn more about being a Worker
The World’s Largest Workforce

Instantly hire millions of people to collect, filter, and enhance your data.

Business Data
Data collected at scale
The accuracy of in-house teams, the cost advantage of the crowd

Senti
Sentiment Analysis
Fast, accurate human review of user-generated social media content.

Contributors & Channels
Interested in completing microtasks or displaying a task wall to your user base?

Real-time Crowd Labor

- 4 judgments/sec
- 911,585,246 total judgments

On-Demand
Pay for only what you need when you need it.

Accurate
Guaranteed quality with rich analytics.

Fast
100x faster than traditional methods.

Experienced
Creating crowdsourcing solutions since 2007.
Crowdturfing (Crowdsourcing + Astroturfing)

- Definition of crowdturfing: masses of cheaply paid shills can be organized to spread malicious URLs in social media, form artificial grassroots campaigns (“astroturf”), and manipulate search engines.

- A Multimillion-dollar industry in Chinese crowdsourcing sites
 - 90% crowdturfing tasks [MIT Technology Review]

- 70~95% crowdturfing tasks at several U.S. crowdsourcing sites [Wang et al., WWW 2012]

<table>
<thead>
<tr>
<th>Website</th>
<th>Campaigns</th>
<th>% Crowdturfing</th>
<th>Tasks</th>
<th>$ per Subm.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amazon Turk (US)</td>
<td>41K</td>
<td>12%</td>
<td>2.9M</td>
<td>$0.092</td>
</tr>
<tr>
<td>ShortTask* (US)</td>
<td>30K</td>
<td>95%</td>
<td>527K</td>
<td>$0.096</td>
</tr>
<tr>
<td>MinuteWorkers (US)</td>
<td>710</td>
<td>70%</td>
<td>10K</td>
<td>$0.241</td>
</tr>
<tr>
<td>MyEasyTask (US)</td>
<td>166</td>
<td>83%</td>
<td>4K</td>
<td>$0.149</td>
</tr>
<tr>
<td>Microworkers (US)</td>
<td>267</td>
<td>89%</td>
<td>84K</td>
<td>$0.175</td>
</tr>
</tbody>
</table>

Wang et al. WWW 2012
Targeted Crowdsourcing Sites

• Eastern crowdsourcing sites
 – Zhubajie (ZBJ)
 – Sandaha (SDH)

• Western crowdsourcing sites
 – Microworkers.com
 – ShortTask.com
 – Rapidworkers.com
Eastern Crowdsourcing Sites
Crowdturfing Sites

• Focus on the two largest sites
 – Zhubajie (ZBJ)
 – Sandaha (SDH)

• Crawling ZBJ and SDH
 – Details are completely open
 – Complete campaign history since going online
 • ZBJ 5-year history
 • SDH 2-year history

Crowdturfing Workflow

Customers
- Initiate campaigns
- May be legitimate businesses

Agents
- Manage campaigns and workers
- Verify completed tasks

Workers
- Complete tasks for money
- Control Sybils on other websites

Company X

ZBJ/SDH

Worker Y
Campaign Information

Promote our product using your blog

- **Campaign ID**: [100304]
- **Input Money**: ¥100
- **Category**: Blog Promotion
- **Rewards**: 100 tasks, each ¥0.8
 77 submissions accepted
 Still need 23 more
- **Status**: Ongoing (177 reports submitted)

Report generated by workers

- **Report ID**: 2814244号
- **WorkerID**: WYQ951456
- **Experience**: 10 中级
- **Reputation**: 💫 ⭐ ⭐ ⭐ ⭐

URL

Screenshots

Accepted!
High Level Statistics

<table>
<thead>
<tr>
<th>Site</th>
<th>Active Since</th>
<th>Total Campaigns</th>
<th>Workers</th>
<th>Reports</th>
<th>$ for Workers</th>
<th>$ for Site</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZBJ</td>
<td>Nov. 2006</td>
<td>76K</td>
<td>169K</td>
<td>6.3M</td>
<td>$2.4M</td>
<td>$595K</td>
</tr>
</tbody>
</table>

Site Growth Over Time

- Campaigns per Month
- Dollars per Month

- ZBJ
- SDH

Jan. 08 Jan. 09 Jan. 10 Jan. 11

1,000,000

1,000,000

1,000,000

1,000,000
Spam Per Worker

- Transient workers
 - Makes up majority of a diverse worker population

- Prolific workers
 - Major force of spam generation
Are Workers Real People?

% of Reports from Workers

Late Night/Early Morning

Work Day/Evening

Lunch

Dinner

Hours in the Day

0 5 10 15 20

% of Reports from Workers

0 1 2 3 4 5 6 7 8 9

ZBJ

SDH
Campaign Types

Top 5 Campaign Types on ZBJ

<table>
<thead>
<tr>
<th>Campaign Target</th>
<th># of Campaigns</th>
<th>$ per Campaign</th>
<th>$ per Spam</th>
<th>Monthly Growth</th>
</tr>
</thead>
<tbody>
<tr>
<td>Account Registration</td>
<td>29,413</td>
<td>$71</td>
<td>$0.35</td>
<td>16%</td>
</tr>
<tr>
<td>Forums</td>
<td>17,753</td>
<td>$16</td>
<td>$0.27</td>
<td>19%</td>
</tr>
<tr>
<td>Instant Message Groups</td>
<td>12,969</td>
<td>$15</td>
<td>$0.70</td>
<td>17%</td>
</tr>
<tr>
<td>Microblogs (e.g. Twitter/Weibo)</td>
<td>4061</td>
<td>$12</td>
<td>$0.18</td>
<td>47%</td>
</tr>
<tr>
<td>Blogs</td>
<td>3067</td>
<td>$12</td>
<td>$0.23</td>
<td>20%</td>
</tr>
</tbody>
</table>

- Most campaigns are spam generation
- Highest growth category is microblogging
 - Weibo: increased by 300% (200 million users) in a single year (2011)
 - $100 → audience of 100K Weibo users
Western Crowdsourcing Sites
Research Goal and Framework

• **Goal**: reveal the underlying ecosystems of crowdturfers

 ![Diagram of crowdsourcing sites and social media site]

 Crowdsourcing Sites → **Social Media Site**

 - **Requester**
 - **Worker**
 - **Middleman**
 - **Worker (Pro + Casual)**
 - **Non-Worker**

• **In crowdsourcing sites**
 – **Who** are these participants?
 – **What** are their **roles**?
 – **What** types of campaigns are they engaged in?

Collected and analyzed 144 requesters’ profiles and 4,012 workers’ profiles in a Western crowdsourcing site, Microworkers.com.

Major portion of the workers are from the developing countries.

70% of all requesters are from the English-speaking countries—United States, UK, Canada, and Australia.

Surprisingly, the workers have done about 3 million tasks and have earned a half million dollars.
Analysis of Crowdturfing Tasks

- Dataset: sampled 505 tasks containing 63,042 jobs from three Western crowdsourcing sites such as Microworkers.com, ShortTask.com and Rapidworkers.com.

- Five groups of the Tasks
 - Social Media Manipulation [56%]:
 - Workers to target social media
 - Sign Up [26%]:
 - Workers to sign up on a website for several reasons (e.g., to increase the user pool, and promote advertisements)
 - Search Engine Spamming [7%]:
 - Workers to search for a certain keyword on a search engine, and then click the specified link
 - Vote Stuffing [4%]:
 - Workers to cast votes
 - Miscellany [7%]:
 - Some other activity
Vote Stuffing

Music Awards: Sign up + Vote for Tommy
1. Go to www.vcmusicawards.com
2. Register to vote
3. Go to the BEST BLUES BAND category
4. Vote for TOMMY MARSH and BAD DOG

Top Rated

- **Tommy Marsh & Bad Dog**
 - 320 votes

- Don Darox & The Melody Joy Bakers
 - 104 votes

- 50 Sticks of Dynamite
 - 22 votes

- R&B Bombers
 - 19 votes

- The Front Street Prophets
 - 7 votes

Tommy Marsh & Bad Dog
Best Blues Band Nominee
Research Questions in Social Media

- By linking crowdurfing tasks and participants on crowdsourcing sites to social media
 - Can we uncover the implicit power structure of crowdturfers?
 - Can we automatically distinguish between the behaviors of crowdturfers and regular social media users?
Linking Crowdsourcing Workers to Social Media

- 65 out of 505 tasks (campaigns) targeted Twitter.
 - Tweeting about a link
 - Following a twitter user

- Twitter Dataset

<table>
<thead>
<tr>
<th>Class</th>
<th>User Profiles</th>
<th>Tweets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Workers</td>
<td>2,864</td>
<td>364,581</td>
</tr>
<tr>
<td>Non-Workers</td>
<td>9,878</td>
<td>1,878,434</td>
</tr>
</tbody>
</table>
Analysis of Twitter Workers

- Activity and linguistic characteristics (by LIWC)

 - workers rarely communicate with other users via @username
 - workers are less personal in the messages they post than non-workers
Network Structure of Twitter Workers

- Twitter workers on average are densely connected to each other.
- The graph density of the workers is higher than the average graph density of Twitter users.
Professional Workers

• Definition: participated in three or more tasks targeting Twitter.
• Surprisingly, graph density of 187 professional workers is even higher than all workers’ graph density
Middlemen

• Definition of Middlemen: Whose messages were often retweeted by the professional workers. These middlemen are the message creators.

• Top-10 Middlemen

<table>
<thead>
<tr>
<th>Middleman</th>
<th>Pro-Workers</th>
<th>Followings</th>
<th>Followers</th>
</tr>
</thead>
<tbody>
<tr>
<td>0boy</td>
<td>139</td>
<td>847</td>
<td>108,929</td>
</tr>
<tr>
<td>louiebaur</td>
<td>95</td>
<td>285</td>
<td>68,772</td>
</tr>
<tr>
<td>hasai</td>
<td>63</td>
<td>6,360</td>
<td>41,587</td>
</tr>
<tr>
<td>soshable</td>
<td>57</td>
<td>956</td>
<td>22,676</td>
</tr>
<tr>
<td>virtualmember</td>
<td>56</td>
<td>5,618</td>
<td>5,625</td>
</tr>
<tr>
<td>scarlettjadi</td>
<td>55</td>
<td>5,344</td>
<td>26,439</td>
</tr>
<tr>
<td>SocialPros</td>
<td>54</td>
<td>10,775</td>
<td>22,985</td>
</tr>
<tr>
<td>cqlivingston</td>
<td>54</td>
<td>6,377</td>
<td>28,556</td>
</tr>
<tr>
<td>huntergreene</td>
<td>49</td>
<td>27,390</td>
<td>25,207</td>
</tr>
<tr>
<td>TKCarsitesInc</td>
<td>48</td>
<td>1,015</td>
<td>18,661</td>
</tr>
</tbody>
</table>

• Most of the middlemen are interested in social media strategy, social marketing and SEO.

• Several middlemen opened their location as Orange County, CA.

• Some of them also often retweeted other middlemen’s messages.
Detecting Crowd Workers

• **Twitter Dataset:**

<table>
<thead>
<tr>
<th>Class</th>
<th>User Profiles</th>
<th>Tweets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Workers</td>
<td>2,864</td>
<td>364,581</td>
</tr>
<tr>
<td>Non-Workers</td>
<td>9,878</td>
<td>1,878,434</td>
</tr>
</tbody>
</table>

• **Feature Categories**
 – **User Demographics**: account age, and other descriptive information about the user
 – **User Friendship Networks**: number of followers, following and bi-directional friends, etc
 – **User Activity**: number of posted tweets, number of links in tweets, etc
 – **User Content**: personality features (LIWC), content similarity, etc

• **Top-10 Features (by chi-square)**

<table>
<thead>
<tr>
<th>Feature</th>
<th>Workers</th>
<th>Non-workers</th>
</tr>
</thead>
<tbody>
<tr>
<td>@username in tweets / recent days</td>
<td>0.696</td>
<td>0.142</td>
</tr>
<tr>
<td>tweets / recent days</td>
<td>4</td>
<td>37</td>
</tr>
<tr>
<td>the number of posted tweets per day</td>
<td>3</td>
<td>21</td>
</tr>
<tr>
<td>rt in tweets / tweets</td>
<td>0.7</td>
<td>9.7</td>
</tr>
<tr>
<td>Swearing in LIWC</td>
<td>0.001</td>
<td>0.009</td>
</tr>
<tr>
<td>links in RT tweets / RT tweets</td>
<td>0.589</td>
<td>0.142</td>
</tr>
<tr>
<td>Anger in LIWC</td>
<td>0.003</td>
<td>0.012</td>
</tr>
<tr>
<td>Total Pronouns in LIWC</td>
<td>0.054</td>
<td>0.107</td>
</tr>
<tr>
<td>1st Person Singular in LIWC</td>
<td>0.019</td>
<td>0.051</td>
</tr>
</tbody>
</table>
Detecting Crowd Workers (Cont’d)

- Performance Results (by 10-fold cross-validation)

<table>
<thead>
<tr>
<th>Classifier</th>
<th>Accuracy</th>
<th>F1</th>
<th>AUC</th>
<th>FNR</th>
<th>FPR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random Forest</td>
<td>93.26%</td>
<td>0.966</td>
<td>0.955</td>
<td>0.036</td>
<td>0.174</td>
</tr>
</tbody>
</table>

- Consistency of Worker Detection over Time (a month later)

<table>
<thead>
<tr>
<th>Class</th>
<th>User Profiles</th>
<th>Tweets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Workers</td>
<td>368</td>
<td>40,344</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Classifier</th>
<th>Accuracy</th>
<th>F1</th>
<th>FNR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random Forest</td>
<td>94.3%</td>
<td>0.971</td>
<td>0.057</td>
</tr>
</tbody>
</table>

This positive experimental result shows that their classification approach is promising to find new workers in the future.
So far…Crowdturfing

• Eastern crowdsourcing sites
 – Zhubajie (ZBJ)
 – Sandaha (SDH)

• Western crowdsourcing sites
 – Microworkers.com
 – ShortTask.com
 – Rapidworkers.com

Schedule

09:00 ~ 09:10 Introduction to Social Media Threats (Social Spam, Campaigns, Misinformation and Crowdturfing)

09:10 ~ 09:55 Social Spam

09:55 ~ 10:25 Campaigns

10:25 ~ 10:35 Break

10:35 ~ 11:15 Misinformation

11:15 ~ 11:45 Crowdturfing

11:45 ~ 12:00 Challenges, Tools and Conclusion
Open Research Challenges

• Need for large, accurate, up-to-date data sets
 – APIs
 – Hard crawling
 – Shared datasets
 – Purchasing data (e.g., Gnip)
 – Data grant or know an insider

• Labeling
 – Manual labeling
 – Use crowd wisdom
 – Get labeled data from a social media site
 – Blacklist
Open Research Challenges

• Integration of multiple techniques for data processing and modeling
 – Big data analysis, machine learning (data mining), information retrieval, visualization, etc

• Interdisciplinary research for analysis
 – computer science, social science, psychology, etc

• Arms race (endless battle)
 – Spammers and malicious users change their behaviors or use new techniques to avoid existing detection approaches
 – Spammers and malicious users move to another site
Useful Tools

• Machine learning
 – LingPipe (linguistic analysis): http://alias-i.com/lingpipe/

• Visualization
 – Matplotlib: http://matplotlib.org/
 – Gephi: https://gephi.org/
 – Graphviz: http://www.graphviz.org/
Useful Tools

• Big data analysis and visualization
 – Hadoop (MapReduce): http://hadoop.apache.org/
 – Pig: https://pig.apache.org/
 – Hive: https://hive.apache.org/
 – Cascalog: http://cascalog.org/
 – Giraph: https://giraph.apache.org/

• Scalable machine learning
 – Mahout: https://mahout.apache.org/

• Large scale stream processing
 – Storm: http://storm.incubator.apache.org/
 – Summingbird: https://github.com/twitter/summingbird
Conclusion

• We covered four social media threats
 – Social Spam
 – Campaigns
 – Misinformation
 – Crowdturfing
• We focused on countermeasures and their experimental results

• Tutorial slides:
• Collaboration for research and proposal
 – kyumin.lee@usu.edu
 – @humanist0810
Grier, C., Thomas, K., Paxson, V., and Zhang, M. @spam: the underground on 140 characters or less. In CCS, 2010.
Lee, K., Eoff, B., and Caverlee, J. Seven Months with the Devils: A Long-Term Study of Content Polluters on Twitter. In ICWSM, 2011.
All Reference List

Thanks to…

• All authors in the reference list for sharing their presentation slides.
Thank you